Genetic polymorphism and frequency study at 15 short tandem repeat loci in the North and East Indian populations for use in personal identification and applications in India

Prabakaran Mathiyazhagan(1*), Thangaraju Palanimuthu(2), Agasthi Padmanathan(3)

(1) Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Chennai, 603203 India
(2) Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Chennai, 603203 India
(3) Department of Mathematics, Tagore Engineering College, Chennai, 600127 India
(*) Corresponding Author


Allele frequency is a crucial factor in estimating the weight of evidence (WoE) for an individual’s involvement in a DNA sample. To determine the allele and genotype frequencies within the populations of the northern and eastern states of India, 15 short tandem repeats (STRs) were used, including Penta E, CSF1PO, D18S51, D7S820, D21S11, TH01, D3S1358, Vwa, FGA, TPOX, D8S1179, D16S539, D13S317, Penta D, and D5S818. The study involved 509 randomly selected individuals, analyzed using the PowerPlex 16 System Kit. Various statistical parameters of forensic significance were calculated using Forensic Statistic Analysis Toolbox (FORSTAT) software, including the typical paternity index (TPI), power of exclusion (PE), matching probability (MP), power of discrimination (PD), polymorphism information content (PIC), and observed (Hobs) and expected heterozygosities (Hexp). The analysis revealed a maximum allele frequency of 0.4282 at TPOX, with a minimum frequency of 0.0009 observed at different loci. FGA was found to be the most polymorphic loci among the 15 loci analyzed in the North and East Indian populations. Furthermore, no divergence from the Hardy‐Weinberg equilibrium (HWE) was observed. The results serve as a valuable source of information for establishing a DNA database for North and East Indian populations, providing essential information for population genetics studies and forensic casework in India.


FORSTAT; Hardy‐Weinberg equilibrium; PowerPlex 16; STR; WoE

Full Text:



Balamurugan K, Kanthimathi S, Vijaya M, Suhasini G, Duncan G, Tracey M, Budowle B. 2010. Genetic variation of 15 autosomal microsatellite loci in a Tamil population from Tamil Nadu, Southern India. Leg. Med. 12(6):320–323. doi:10.1016/j.legalmed.2010.07.004.

Børsting C, Morling N. 2016. Genomic applications in forensic medicine. Med. Heal. Genomics p. 295–309. doi:10.1016/B978-0-12-420196-5.00022-8.

Butler J. 2007. Short tandem repeat typing technology used in human identity testing. BioTechniques 43:ii– v. doi:10.2144/000112582.

Butler JM. 2014. Advanced topics in forensic DNA typing: Interpretation. Elsevier Science. doi:10.1016/C2011-0-07649-4.

Chandra D, Mishra VC, Anthwal A, Gupta N, Bhardwaj AK, Raina A, Kumari S, Dey N, Raina V. 2021. Genetic polymorphism of 21 STR markers in the representative sample of Indian population. Gene Reports 25:101411. doi:10.1016/j.genrep.2021.101411.

Dixit S, Dubey I, Kumawat R, Tripathi I, Shrivastava D, Panda M, Shrivastava P. 2020. Genetic polymorphism of 15 autosomal STR loci in population of Madhya Pradesh. Medico-Legal Updat. 20(4):2074– 2079. doi:10.37506/mlu.v20i4.2150.

Geological Survey of India. 2015. Northern Region. Geological Survey of India, MOI, Government of India. Archived from the original on 24 September 2015. Retrieved 2 May 2015.

Herrera RJ, Bertrand RG. 2018. The nature of evolution. London: Elsevier. Kumawat R, Shrivastava P, Shrivastava D, Mathur G, Dixit S, Chaubey G. 2020. Evaluating the gene flow from East to West among various populations of Rajasthan, India. Preprints p. 2020060272. doi:10.21203/

McMahon K, Paciorkowski AR, Walters-Sen LC, Milunsky JM, Bassuk A, Darbro B, Diaz J, Dobyns WB, Gropman A. 2017. Neurogenetics in the genome era. Swaiman’s Pediatr. Neurol. Princ. Pract. Sixth Ed. p. 257–267. doi:10.1016/B978-0-323-37101-8.00034- 5.

Preet K, Malhotra S, Shrivastava P, Jain T, Rawat S, Varte LR, Singh S, Singh I, Sarkar S. 2016. Genetic diversity in Gorkhas: An autosomal STR study. Sci. Rep. 6:32494. doi:10.1038/srep32494.

Ristow PG, D’Amato ME. 2017. Forensic statistics analysis toolbox (FORSTAT): A streamlined workflow for forensic statistics. Forensic Sci. Int. Genet. Suppl. Ser. 6:e52–e54. doi:10.1016/j.fsigss.2017.09.006.

Santos F, Machado H, Silva S. 2013. Forensic DNA databases in European countries: is size linked to performance? Life Sci. Soc. Policy 9:12. doi:10.1186/2195-7819-9-12.

Shrivastava P, Jain T, Trivedi VB. 2015. Genetic polymorphism study at 15 autosomal locus in central Indian population. Springerplus 4(1):566. doi:10.1186/s40064-015-1364-1.

Singh M, Nandineni MR. 2017. Population genetic analyses and evaluation of 22 autosomal STRs in Indian populations. Int. J. Legal Med. 131(4):971–973. doi:10.1007/s00414-016-1525-y.

Srivastava V, Surekha Rani H, Kumawat R, Chaubey G, Shrivastava P. 2020. Genomic diversity of the Muslim population from Telangana (India) inferred from 23 autosomal STRs. Ann. Hum. Biol. 47(7-8):652–658. doi:10.1080/03014460.2020.1822915.

Stanley UN, Khadija AM, Bukola AT, Precious IO, Davidson EA. 2020. Forensic DNA profiling: Autosomal short tandem repeat as a prominent marker in crime investigation. Malays. J. Med. Sci. 27(4):22– 35. doi:10.21315/mjms2020.27.4.3.


Article Metrics

Abstract views : 426 | views : 484


  • There are currently no refbacks.

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.