Genetic evaluation of F2 and F3 interspecific hybrids of mung bean (Vigna radiata L. Wilczek) using retrotransposon‐based insertion polymorphism and sequence‐related amplified polymorphism markers

https://doi.org/10.22146/ijbiotech.82760

Yeni Fatmawati(1), Ilyas Ilyas(2), Agus Budi Setiawan(3*), Aziz Purwantoro(4), Dyah Weny Respatie(5), Chee How Teo(6)

(1) Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada. Jl. Flora, Bulaksumur, Daerah Istimewa Yogyakarta 55281, Indonesia
(2) Laboratory of Plant Breeding, Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada. Jl. Flora, Bulaksumur, Daerah Istimewa Yogyakarta 55281, Indonesia
(3) Laboratory of Plant Breeding, Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada. Jl. Flora, Bulaksumur, Daerah Istimewa Yogyakarta 55281, Indonesia
(4) Laboratory of Plant Breeding, Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada. Jl. Flora, Bulaksumur, Daerah Istimewa Yogyakarta 55281, Indonesia
(5) Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada. Jl. Flora, Bulaksumur, Daerah Istimewa Yogyakarta 55281, Indonesia
(6) Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
(*) Corresponding Author

Abstract


Mung bean (Vigna radiata L. Wilczek) is a self‐pollinating and indispensable pulse crop in Indonesia. While low yield productivity is a major concern, genetic improvement is possible through interspecific hybridization. However, interspecific hybridization is relatively infrequent and produces low recombination exchanges, significantly limiting crop breeding efficiency. Thus, a comprehensive study is needed of the selection and genetic diversity evaluation of progenies in advanced generations derived from interspecific hybridization using a specific molecular marker. This study aims to confirm the heterozygosity in the F2 population and assess the genetic diversity in F3 mung bean populations resulting from interspecific hybridization between the mung bean and common bean. We designed the retrotransposon‐based insertion polymorphism (RBIP) marker by identifying the syntenic regions in the flanking sequences of retrotransposon insertion in common bean and mung bean. The RBIP marker can be applied to distinguish the heterozygote progenies from the homozygote progenies. Six combinations of sequence‐related amplified polymorphism (SRAP) primers were used in the genotyping of F3 mung bean progenies. The SRAP marker showed a high degree of polymorphism of up to 100%, while high genetic variation was observed within the population (71%) of mung bean progenies. The F3.4 population had the greatest number of genotypes and displayed the highest number of effective alleles, private alleles, and percentage of polymorphic loci, suggesting the existence of high genetic diversity within this population. These genetic diversity data are exceptionally critical for future genetic research since it has potentially high yield production. The genomic and marker‐assisted selection studies will support the major goals of the mung bean breeding program.


Keywords


Genetic differentiation; Heterozygosity; Intergeneric hybrids; Mung bean breeding; RBIP marker

Full Text:

PDF


References

Abbas G, Hameed A, Rizwan M, Ahsan M, Asghar MJ, Iqbal N. 2015. Genetic confirmation of mung bean (Vigna radiata) and mash bean (Vigna mungo) interspecific recombinants using molecular markers. Front. Plant Sci. 6(DEC):1–10. doi:10.3389/fpls.2015.01107.

Aneja B, Yadav NR, Yadav RC, Kumar R. 2013. Sequence related amplified polymorphism (SRAP) analysis for genetic diversity and micronutrient content among gene pools in mung bean [Vigna radiata (L.) Wilczek]. Physiol. Mol. Biol. Plants 19(3):399–407. doi:10.1007/s12298-013-0177-3.

Baenziger PS, Salah I, Little RS, Santra DK, Regassa T, Wang MY. 2011. Structuring an efficient organic wheat breeding program. Sustainability 3(8):1190– 1205. doi:10.3390/su3081190.

Benke AP, Krishna R, Mahajan V, Ansari WA, Gupta AJ, Khar A, Shelke P, Thangasamy A, Shabeer TP, Singh M, Bhagat KP, Manjunathagowda DC. 2021. Genetic diversity of Indian garlic core germplasm using agro-biochemical traits and SRAP markers. Saudi J. Biol. Sci. 28(8):4833–4844. doi:10.1016/j.sjbs.2021.05.013.

Dharajiya DT, Khadia SM, Pagi NK, Khatrani TJ, Jasani HV, Khunt AD, Ravindrababu Y. 2017. Modified method of high quality genomic DNA extraction from mung bean [Vigna radiata (L.) Wilczek] suitable for PCR based amplification. Indian J. Sci. Technol. 10(20):1–7. doi:10.17485/ijst/2017/v10i20/95082.

Dreissig S, Mascher M, Heckmann S, Purugganan M. 2019. Variation in recombination rate is shaped by domestication and environmental conditions in barley. Mol. Biol. Evol. 36(9):2029–2039. doi:10.1093/molbev/msz141.

Eltaher S, Sallam A, Belamkar V, Emara HA, Nower AA, Salem KF, Poland J, Baenziger PS. 2018. Genetic diversity and population structure of F3:6 Nebraska Winter wheat genotypes using genotyping-by-sequencing. Front. Genet. 9(MAR):1–9. doi:10.3389/fgene.2018.00076.

Fatmawati Y. 2022. Validasi genetik berdasarkan penanda retrotransposon dan evaluasi komponen hasil pada populasi F2 dan F3 hasil persilangan intergenerik [kacang hijau (Vigna radiata) x buncis (Phaseolus vulgaris) [Genetic validation based on retrotransposon markers and evaluation of yield components in F2 and F3 populations resulting from intergeneric crosses [mung beans (Vigna radiata) x chickpeas (Phaseolus vulgaris)]. Master’s thesis, Universitas Gadjah Mada, Yogyakarta.

Fatmawati Y, Setiawan AB, Purwantoro A, Respatie DW, Teo CH. 2021. Analysis of genetic variability in F2 interspecific hybrids of mung bean (Vigna radiata) using inter-retrotransposon amplified polymorphism marker system. Biodiversitas 22(11):4880– 4889. doi:10.13057/biodiv/d221121.

Fernandes JB, Séguéla-Arnaud M, Larchevêque C, Lloyd AH, Mercier R. 2018. Unleashing meiotic crossovers in hybrid plants. Proc. Natl. Acad. Sci. U. S. A. 115(10):2431–2436. doi:10.1073/pnas.1713078114.

Ganesan K, Xu B. 2018. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci. Hum. Wellness 7(1):11– 33. doi:10.1016/j.fshw.2017.11.002.

Glombik M, Bačovský V, Hobza R, Kopecký D. 2020. Competition of parental genomes in plant hybrids. Front. Plant Sci. 11:1–11. doi:10.3389/fpls.2020.00200.

Junier T, Pagni M. 2000. Dotlet: Diagonal plots in a Web browser. Bioinformatics 16(2):178–179. doi:10.1093/bioinformatics/16.2.178.

Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. 2017. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 109(3-4):312–319. doi:10.1016/j.ygeno.2017.05.005.

Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, Jun TH, Hwang WJ, Lee T, Lee J, Shim S, Yoon MY, Jang YE, Han KS, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim KS, Gwag JG, Moon JK, Lee YH, Park BS, Bombarely A, Doyle JJ, Jackson SA, Schafleitner R, Srinives P, Varshney RK, Lee SH. 2014. Genome sequence of mung bean and insights into evolution within Vigna species. Nat. Commun. 5:5443. doi:10.1038/ncomms6443.

Kaur G, Joshi A, Jain D. 2018. SSR-marker assisted evaluation of genetic diversity in mung bean (Vigna radiata (L.) Wilcezk) genotypes. Brazilian Arch. Biol. Technol. 61:e18160613. doi:10.1590/1678- 4324-2016160613.

Kim H, Terakami S, Nishitani C, Kurita K, Kanamori H, Katayose Y, Sawamura Y, Saito T, Yamamoto T. 2012. Development of cultivar-specific DNA markers based on retrotransposon-based insertional polymorphism in Japanese pear. Breed. Sci. 62(1):53–62. doi:10.1270/jsbbs.62.53.

Lavin M, Herendeen PS, Wojciechowski MF. 2005. Evolutionary rates analysis of leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol. 54(4):575–594. doi:10.1080/10635150590947131.

Li G, Quiros CF. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103(2- 3):455–461. doi:10.1007/s001220100570.

Lin Y, Laosatit K, Chen J, Yuan X, Wu R, Amkul K, Chen X, Somta P. 2020. Mapping and functional characterization of stigma exposed 1, a DUF1005 gene controlling petal and stigma cells in mung bean (Vigna radiata). Front. Plant Sci. 11:1–12. doi:10.3389/fpls.2020.575922.

Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A. 2020. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 48(D1):D265–D268. doi:10.1093/nar/gkz991.

McClean PE, Mamidi S, McConnell M, Chikara S, Lee R. 2010. Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genomics 11(1):184. doi:10.1186/1471-2164- 11-184.

Mirani AA, Teo CH, Markhand GS, Abul-Soad AA, Harikrishna JA. 2020. Detection of somaclonal variations in tissue cultured date palm (Phoenix dactylifera L.) using transposable element-based markers. Plant Cell. Tissue Organ Cult. 141(1):119–130. doi:10.1007/s11240-020-01772-y.

Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS. 2018. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 32(2):261–285. doi:10.1080/13102818.2017.1400401.

Nashima K, Terakami S, Kunihisa M, Nishitani C, Shoda M, Matsumura M, Onoue-Makishi Y, Urasaki N, Tarora K, Ogata T, Yamamoto T. 2017. Retrotransposon-based insertion polymorphism markers in mango. Tree Genet. Genomes 13:110. doi:10.1007/s11295-017-1192-2.

Noble TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA, Mundree SG. 2018. Characterization of linkage disequilibrium and population structure in a mung bean diversity panel. Front. Plant Sci. 8:1–9. doi:10.3389/fpls.2017.02102.

Novidiyanto, Asrullah M, Arsanti Lestari L, Helmyati S, Farmawati A. 2019. Effect supplementation of mung bean sprouts (Phaseolus radiatus L.) and vitamin E in rats fed high fat diet. KnE Life Sci. 4(11):36. doi:10.18502/kls.v4i11.3850.

Pandiyan M, Vaithiyalingan M, Krishnaveni A, Sivakumar C, Gopikrishnan A, Radhakrishnan V, Jamuna E, Sivakumar P. 2020. Interspecific hybridization in direct and reciprocal crosses of Vigna radiata and Vigna aconitifolia. Ann. Agric. Crop Sci. 5(2):1062.

Peakall R, Smouse PE. 2012. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19):2537– 2539. doi:10.1093/bioinformatics/bts460.

Purwantoro A, Setiawan AB, Nugraha RS, Mujtaba SB, Setyadi AH. 2023. Genetic variation and genomic constitution in the spatulata orchid hybrids (Dendrobium spp.) derived from interspecific hybridization using SRAP marker. Indones. J. Biotechnol. 28(2):119–126. doi:10.22146/ijbiotech.83595.

Rohlf FJ. 2009. NTSYS-pc : Numerical taxonomy and multivariate analysis system. New York: Exeter Software Setauke. Salem KF, Sallam A. 2016. Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes. Comptes Rendus - Biol. 339(1):1–9. doi:10.1016/j.crvi.2015.11.003.

Schulman AH, Flavell AJ, Paux E, Ellis TH. 2012. The application of LTR retrotransposons as molecular markers in plants, volume 859. New York: Humana Press. doi:10.1007/978-1-61779-603-6_7.

Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T. 2020. Chromosomal locations of a non-LTR retrotransposon, menolird18, in Cucumis melo and Cucumis sativus, and its implication on genome evolution of Cucumis species. Cytogenet. Genome Res. 160(9):554–564. doi:10.1159/000511119.

Shehzad M, Zhou Z, Ditta A, Khan M, Cai X, Xu Y, Maqbool A, Khalofah A, Shaban M, Naeem M, Ansari MJ, Wang K, Liu F. 2021. Identification and characterization of genes related to salt stress tolerance within segregation distortion regions of genetic map in F2 population of upland cotton. PLoS One 16:1– 30. doi:10.1371/journal.pone.0247593.

Shen C, Wang N, Zhu D, Wang P, Wang M, Wen T, Le Y, Wu M, Yao T, Zhang X, Lin Z. 2021. Gossypium tomentosum genome and interspecific ultra-dense genetic maps reveal genomic structures, recombination landscape and flowering depression in cotton. Genomics 113(4):1999–2009. doi:10.1016/j.ygeno.2021.04.036.

Sorajjapinun W, Chankaew S, Srinives P. 2012. Comparison of hybrid vigor based on parental distance in SSR markers and agronomic traits in mung bean (Vigna radiata (L.) Wilczek). Songklanakarin J. Sci. Technol. 34(2):143–151.

Sormin SYM, Purwantoro A, Setiawan AB, Teo CH. 2021. Application of inter-SINE amplified polymorphism (ISAP) markers for genotyping of Cucumis melo accessions and its transferability in Coleus spp. Biodiversitas 22(5):2918–2929. doi:10.13057/biodiv/d220557.

Stefanović S, Pfeil BE, Palmer JD, Doyle JJ. 2009. Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst. Bot. 34(1):115–128. doi:10.1600/036364409787602221.

Taufiq A, Kristiono A. 2016. Effect of plant population on character expression of five mung bean genotypes under different soil fertility. Agrivita 38(3):251–260. doi:10.17503/agrivita.v38i3.652.

Toyomoto D, Uemura M, Taura S, Sato T, Henry R, Ishikawa R, Ichitani K. 2019. Segregation distortion observed in the progeny of crosses between Oryza sativa and O. meridionalis caused by abortion during seed development. Plants 8(10):398. doi:10.3390/plants8100398.

Uzun A, Yesiloglu T, Aka-Kacar Y, Tuzcu O, Gulsen O. 2009. Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci. Hortic. (Amsterdam). 121(3):306–312. doi:10.1016/j.scienta.2009.02.018.

Xu Z, Wang H. 2007. LTR-FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35:265–268. doi:10.1093/nar/gkm286.

Yu X, Zhai Y, Wang P, Cheng C, Li J, Lou Q, Chen J. 2021. Morphological, anatomical and photosynthetic consequences of artificial allopolyploidization in Cucumis. Euphytica 217:5. doi:10.1007/s10681-020-02735-2.

Zhan Z, Nwafor CC, Hou Z, Gong J, Zhu B, Jiang Y, Zhou Y, Wu J, Piao Z, Tong Y, Liu C, Zhang C. 2017. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L. PLoS One 12(5):1–17. doi:10.1371/journal.pone.0177470.

Zhang X, Liu T, Li X, Duan M, Wang J, Qiu Y, Wang H, Song J, Shen D. 2016. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables. Sci. Rep. 6:1–14. doi:10.1038/srep18618.

Ishikawa R, Ichitani K. 2019. Segregation distortion observed in the progeny of crosses between Oryza sativa and O. meridionalis caused by abortion during seed development. Plants 8(10):398. doi:10.3390/plants8100398.

Uzun A, Yesiloglu T, Aka-Kacar Y, Tuzcu O, Gulsen

O. 2009. Genetic diversity and relationships

within Citrus and related genera based on sequence related amplified polymorphism markers

(SRAPs). Sci. Hortic. (Amsterdam). 121(3):306–312.

doi:10.1016/j.scienta.2009.02.018.

Xu Z, Wang H. 2007. LTR-FINDER: An efficienttool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35:265–268.doi:10.1093/nar/gkm286.

Yu X, Zhai Y, Wang P, Cheng C, Li J, Lou Q, Chen J. 2021. Morphological, anatomical and photosynthetic consequences of artificial allopolyploidization in Cucumis. Euphytica 217:5. doi:10.1007/s10681-020-02735-2.

Zhan Z, Nwafor CC, Hou Z, Gong J, Zhu B, Jiang Y, Zhou Y, Wu J, Piao Z, Tong Y, Liu C, Zhang

C. 2017. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant

trait into Brassica napus L. PLoS One 12(5):1–17.

doi:10.1371/journal.pone.0177470.

Zhang X, Liu T, Li X, Duan M, Wang J, Qiu Y, Wang H, Song J, Shen D. 2016. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables. Sci. Rep. 6:1–14. doi:10.1038/srep18618.



DOI: https://doi.org/10.22146/ijbiotech.82760

Article Metrics

Abstract views : 521 | views : 430

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.