Fermentation medium optimization of Streptomyces sp. as an antifungal agent against the Ganoderma boninensis pathogen in oil palm

https://doi.org/10.22146/ijbiotech.82396

Syamsika Tahir(1*), Widya Dwi Rukmi Putri(2), Agustin Krisna Wardani(3), Rofiq Sunaryanto(4)

(1) Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
(2) Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
(3) Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
(4) LAPTIAB, Agency for the Assessment and Application of Technology, Jl. Raya Puspiptek, Tangerang 15314, Indonesia
(*) Corresponding Author

Abstract


Ganoderma boninensis is the most common fungus which attacks oil palm trees. However, a significant percentage of inhibition to the problem is found through the use of Streptomyces sp. The optimization of the Streptomyces sp. fermentation medium growth factors affects the secondary metabolites production. This study aimed to identify the best formulation of carbon and nitrogen sources and the optimum concentration of Streptomyces sp. fermentation medium for antifungal compound production. The results showed that the best sources of carbon and nitrogen were liquid glucose and monosodium glutamate in the inhibition zones of 16.7 mm and 6.3 mm, while the best concentration levels were 20 g/L and 14.19 g/L, respectively. The results of the first optimization showed an inhibition zone response and area (%) of the optimum high‐performance liquid chromatography (HPLC) chromatogram of 24.39 mm and 62.68 percent, respectively. Taking the suggestion of the first optimization, the second optimization produced 15.2 g/L and 8.3 g/L. The predicted value of the inhibition zone was 21.47 mm, and the area (%) of the HPLC chromatogram was 53.44 percent. The validation results showed an inhibition zone response of 22.01 mm and an HPLC chromatogram area (%) of 54.86 percent. The difference between the predicted and validation values was less than 5 percent; the validation value was thus in line with the value predicted by Design Expert 10.0.7. The chemical formula of the probable active compound is that of the cyclo(phenylalanyl‐prolyl) compound.

Keywords


Ganoderma boninensis; Optimization of fermentation media; Secondary metabolites; Streptomyces sp.

Full Text:

PDF


References

Budi MBS, Giyanto, Tondok ET. 2022. Isolation of actinomycetes from peatland to suppress the growth of Ganoderma boninense the causal agent of basal stem rot disease in oil palm. Biodiversitas 23(11):5914– 5922. doi:10.13057/biodiv/d231145.

Budiani A, Nugroho IB, Sari DA, Palupi I, Putranto RA. 2019. CRISPR/Cas9-mediated knockout of an oil palm defense-related gene to the pathogenic fungus Ganoderma boninense. Indones. J. Biotechnol. 24(2):101–105. doi:10.22146/ijbiotech.52170.

Fedorenko V, Genilloud O, Horbal L, Marcone GL, Marinelli F, Paitan Y, Ron EZ. 2015. Antibacterial discovery and development: from gene to product and back. Biomed Res. Int. 2015:591349. doi:10.1155/2015/591349.

Ho CL, Tan YC. 2015. Molecular defense response of oil palm to Ganoderma infection. Phytochemistry 114:168–177. doi:10.1016/j.phytochem.2014.10.016.

Janatiningrum I, Lestari Y. 2022. Enzyme production, antibacterial and antifungal activities of actinobacteria isolated from Ficus deltoidea rhizosphere. Biodiversitas 23(4):1950–1957. doi:10.13057/biodiv/d230429.

Ju Y, Son KH, Jin C, Hwang BS, Park DJ, Kim CJ. 2018. Statistical optimization of culture medium for improved production of antimicrobial compound by Streptomyces rimosus AG-P1441. Food Sci. Biotechnol. 27(2):581–590. doi:10.1007/s10068-017-0257- 1.

Khaled AY, Abd Aziz S, Bejo SK, Nawi NM, Abu Seman I. 2018. Spectral features selection and classification of oil palm leaves infected by basal stem rot (BSR) disease using dielectric spectroscopy. Comput. Electron. Agric. 144:297–309. doi:10.1016/j.compag.2017.11.012.

Khatiwada D, Palmén C, Silveira S. 2021. Evaluating the palm oil demand in Indonesia: Production trends, yields, and emerging issues. Biofuels 12(2):135–147. doi:10.1080/17597269.2018.1461520.

Lim PH, Gansau JA, Chong KP. 2018. Streptomyces spp. A potential biocontrol agent against Ganoderma boninense of basal stem rot. J. Oil Palm Res. 30(2):265– 275. doi:10.21894/jopr.2018.0024.

Maznah Z, Halimah M, Ismail S, Idris AS. 2015. Dissipation of the fungicide hexaconazole in oil palm plantation. Environ. Sci. Pollut. Res. 22(24):19648–19657. doi:10.1007/s11356-015-5178-z.

Meng L, Sun C, Zhang C, Song S, Sun X, Ju J, Deng Y. 2019. Efficacy of compounds isolated from Streptomyces olivaceus against the morphogenesis and virulence of Candida albicans. Mar. Drugs 17(8):442. doi:10.3390/md17080442.

Najihah NI, Hanafi MM, Idris AS, Hakim MA. 2015. Silicon treatment in oil palms confers resistance to basal stem rot disease caused by Ganoderma boninense. Crop Prot. 67:151–159. doi:10.1016/j.cropro.2014.10.004.

Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, Rawat CD, Mishra V, Kaur J. 2022. Major biological control strategies for plant pathogens. Pathogens 11(2):273. doi:10.3390/pathogens11020273.

Rahma RA, Widjanarko SB, Sunaryanto R, Yunianta Y. 2015. Optimasi media fermentasi Aspergillus oryzae, penghasil antijamur patogen buah kakao [Phytophthora palmivora fermentation medium optimization of Aspergillus oryzae, antifungals producer for cacao pathogen Phytophthora palmivora]. J. Agritech 35(03):315–323. doi:10.22146/agritech.9343.

Rao KVR, Mani P, Satyanarayana B, Raghava Rao T. 2017. Purification and structural elucidation of three bioactive compounds isolated from Streptomyces coelicoflavus BC 01 and their biological activity. 3 Biotech 7(1):24. doi:10.1007/s13205-016- 0581-9.

Sari DA, Falatehan AF, Ramadhonah RY. 2019. The social and economic impacts of peat Land palm oil plantation in Indonesia. J. Phys. Conf. Ser. 1364:012017. doi:10.1088/1742-6596/1364/1/012017.

Sari DW, Hidayat FN, Abdul I. 2021. Efficiency of land use in smallholder palm oil plantations in Indonesia: A stochastic frontier approach. For. Soc. 5(1):75–89. doi:10.24259/fs.v5i1.10912.

Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CK. 2017. Strategies for fermentation medium optimization: An in-depth review. Front. Microbiol. 7:2087. doi:10.3389/fmicb.2016.02087.

Soraya S, Yanti S, Mikhratunnisa M. 2019. Pengaruh sirup gula cair hasil hidrolisis enzimatis dari sagu (Metroxylon sp.) Sebagai media fermentasi terhadap kadar sefalosporin C [Effect of glucose syrup results enzymatic hydrolysis of sago (Metroxylon sp.) as media fermentation against cephalosporins C]. Pro Food 5(1):430–439. doi:10.29303/profood.v5i1.90.

Sunaryanto R, Marwoto B, Tedja Irawadi T, Alim Mas’ud Z, Hartoto L. 2010. Isolation and characterization of antimicrobial substance from marine Streptomyces sp. Microbiol. Indones. 4(2):219–225. doi:10.5454/mi.4.2.7.

Varkkey H, Tyson A, Choiruzzad SAB. 2018. Palm oil intensification and expansion in Indonesia and Malaysia: Environmental and socio-political factors influencing policy. For. Policy Econ. 92:148–159. doi:10.1016/j.forpol.2018.05.002.

Yen LK, Ali NS. 2022. Championing sustainable treatment of oil palm basal stem rot disease via biological control agents. J. Oil Palm Res. 34(3):401–410. doi:10.21894/jopr.2021.0003.



DOI: https://doi.org/10.22146/ijbiotech.82396

Article Metrics

Abstract views : 969 | views : 794

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.