Antimicrobial compounds from intracellular and extracellular secondary metabolites of Actinobacteria InaCC A759

https://doi.org/10.22146/ijbiotech.82376

Maya Dian Rakhmawatie(1*), Mustofa Mustofa(2), Puspita Lisdiyanti(3), Tri Wibawa(4), Kanti Ratnaningrum(5), Muhammad Mucharom Chairul Umam(6), Muhammad Hasan Alfi(7), Listya Chariri(8)

(1) Department of Biomedical Sciences, Faculty of Medicine, Universitas Muhammadiyah Semarang, Jl. Kedung Mundu Raya No.18, Semarang 50273, Indonesia
(2) Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako Sekip Utara, Yogyakarta 55281, Indonesia
(3) Research Center for Biotechnology, the National Research and Innovation Agency, Jl. Raya Jakarta‐Bogor Km. 46, Bogor 16911, Indonesia
(4) Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Biomedical Sciences, Faculty of Medicine, Universitas Muhammadiyah Semarang, Jl. Kedung Mundu Raya No.18, Semarang 50273, Indonesia
(6) Graduated Student, Faculty of Medicine, Universitas Muhammadiyah Semarang, Jl. Kedung Mundu Raya No. 18, Semarang 50273, Indonesia
(7) Graduated Student, Faculty of Medicine, Universitas Muhammadiyah Semarang, Jl. Kedung Mundu Raya No. 18, Semarang 50273, Indonesia
(8) Graduated Student, Faculty of Medicine, Universitas Muhammadiyah Semarang, Jl. Kedung Mundu Raya No. 18, Semarang 50273, Indonesia
(*) Corresponding Author

Abstract


The World Health Organization (WHO) has determined a list of pathogens that require the development of new antimicrobials due to resistance problems; these include Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. In addition, Mycobacterium smegmatis has been used for antimycobacterial discovery to address the increasing burden of tuberculosis. In this study, optimization of antimicrobial activity, secondary metabolite profiling, and strain identification was conducted on Actinobacteria InaCC A759. Intracellular and extracellular extracts of Actinobacteria InaCC A759 were found to have different antimicrobial activities. The minimum inhibitory concentration (MIC) values of the extract to inhibit the growth of M. smegmatis, E. coli, and P. aeruginosa were 50, 25, and 100 µg/mL (intracellular), and 25, 25, and 100 µg/mL (extracellular), respectively. However, neither extract was able to inhibit the growth of S. aureus. Metabolite profiling using High resolution‐mass spectrometry (HR‐MS) resulted in differences in the major compound between the two extracts of Actinobacteria InaCC A759, namely n‐acetyltyramine (C10H13NO2/179.0945) (24.24%) (intracellular) and palmitic acid (C16H32O2/273.27034) (86.92%) (extracellular). Based on molecular analysis of the 16S rRNA gene, Actinobacteria InaCC A759 is identical to the Streptomyces olivaceus strain FoRh46. The antimicrobial activity and secondary metabolites profiles of Streptomyces olivaceus InaCC A759 have not been previously reported.

Keywords


Actinobacteria; Antimicrobial agents; Metabolite profiling; N‐acetyltyramine; Palmitic acid

Full Text:

PDF


References

Álvarez­Martínez FJ, Barrajón­Catalán E, HerranzLópez M, Micol V. 2021. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 90:153626. doi:10.1016/j.phymed.2021.153626.

Arthur PK, Amarh V, Cramer P, Arkaifie GB, Blessie EJ, Fuseini MS, Carilo I, Yeboah R, Asare L, Robertson BD. 2019. Characterization of two new multidrug­resistant strains of Mycobacterium smegmatis: Tools for routine in vitro screening of novel anti­mycobacterial agents. Antibiotics 8(1):4. doi:10.3390/antibiotics8010004.

Brown­Elliott BA, Nash KA, Wallace RJ. 2012. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous Mycobacteria. Clin. Microbiol. Rev. 25(3):545–582. doi:10.1128/CMR.05030­11.

Casillas­Vargas G, Ocasio­Malavé C, Medina S, MoralesGuzmán C, Del Valle RG, Carballeira NM, SanabriaRíos DJ. 2021. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next­generation of antibacterial agents. Prog. Lipid Res. 82:101093. doi:10.1016/j.plipres.2021.101093.

Chassagne F, Samarakoon T, Porras G, Lyles JT, Dettweiler M, Marquez L, Salam AM, Shabih S, Farrokhi DR, Quave CL. 2021. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front. Pharmacol. 11:586548. doi:10.3389/fphar.2020.586548.

Chong ZY, Sandanamsamy S, Ismail NN, Mohamad S, Mohd Hanafiah K. 2021. Bio­guided fractionation of oil palm (Elaeis guineensis) fruit and interactions of compounds with first­line antituberculosis drugs against Mycobacterium tuberculosis h37ra. Separations 8(2):19. doi:10.3390/SEPARATIONS8020019.

Clavo RF, Pereira AK, Quiñones NR, Costa JH. 2022. Metabolomic comparison using Streptomyces spp. as a factory of secondary metabolites. Preprints (April):1–14.

Clinical and Laboratory Standards Institute (CLSI). 2020. Performance standards for antimicrobial susceptibility testing 30th edition: CLSI supplement M100. Pensylvania: CLSI.

Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM. 2015. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β­caryophyllene from the essential oil of Aquilaria crassna. Molecules 20(7):11808–11829. doi:10.3390/molecules200711808.

Dahl JU, Gray MJ, Bazopoulou D, Beaufay F, Lempart J, Koenigsknecht MJ, Wang Y, Baker JR, Hasler WL, Young VB, Sun D, Jakob U. 2017. The anti­inflammatory drug mesalamine targets bacterial polyphosphate accumulation. Nat. Microbiol. 2:16267. doi:10.1038/nmicrobiol.2016.267.

Damayanti E, Lisdiyanti P, Sundowo A, Ratnakomala S, Dinoto A, Widada J, Mustofa. 2021. Antiplasmodial activity, biosynthetic gene clusters diversity, and secondary metabolite constituent of selected Indonesian Streptomyces. Biodiversitas 22(6):3478– 3487. doi:10.13057/biodiv/d220657.

Dasyam N. 2014. Identification of anti­tubercular compounds in marine organisms from Aotearoa. Doctoral thesis, Victoria University of Wellington, Wellington. Desbois AP, Smith VJ. 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85(6):1629–1642. doi:10.1007/s00253­009­2355­3.

Djinni I, Defant A, Kecha M, Mancini I. 2014. Metabolite profile of marine­derived endophytic Streptomyces sundarbansensis WR1L1S8 by liquid chromatography­mass spectrometry and evaluation of culture conditions on antibacterial activity and mycelial growth. J. Appl. Microbiol. 116(1):39–50. doi:10.1111/jam.12360.

dos Santos JDN, João SA, Martín J, Vicente F, Reyes F, Lage OM. 2022. iChip­inspired isolation, bioactivities and dereplication of actinomycetota from Portuguese beach sediments. Microorganisms 10(7):1471. doi:10.3390/microorganisms10071471.

He Z, De Buck J. 2010. Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155. BMC Microbiol. 10:121. doi:10.1186/1471­2180­10­121.

Heidari B, Mohammadipanah F. 2018. Isolation and identification of two alkaloid structures with radical scavenging activity from Actinokineospora sp. UTMC 968, a new promising source of alkaloid compounds. Mol. Biol. Rep. 45(6):2325–2332. doi:10.1007/s11033­018­4395­1.

Hudson MA, Lockless SW. 2022. Elucidating the mechanisms of action of antimicrobial agents. MBio 13:e02240–21. doi:10.1128/mbio.02240­21.

Husain DR, Wardhani R. 2021. Antibacterial activity of endosymbiotic bacterial compound from Pheretima sp. earthworms inhibit the growth of Salmonella typhi and Staphylococcus aureus: In vitro and in silico approach. Iran. J. Microbiol. 13(4):537–543. doi:10.18502/ijm.v13i4.6981.

IACG. 2019. No time to wait: Securing the future from drug­resistant infections. Geneva: World Health Organization. Kibret M, Guerrero­Garzón JF, Urban E, Zehl M, Wronski VK, Rückert C, Busche T, Kalinowski J, Rollinger JM, Abate D, Zotchev SB. 2018. Streptomyces spp. from Ethiopia producing antimicrobial compounds: Characterization via bioassays, genome analyses, and mass spectrometry. Front. Microbiol. 9:1270. doi:10.3389/fmicb.2018.01270.

Kim WJ, Kim YO, Kim JH, Nam BH, Kim DG, An CM, Lee JS, Kim PS, Lee HM, Oh JS, Lee JS. 2016. Liquid chromatography­mass spectrometrybased rapid secondary­metabolite profiling of marine Pseudoalteromonas sp. M2. Mar. Drugs 14(1):24. doi:10.3390/md14010024.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874. doi:10.1093/molbev/msw054.

Liu Z, Yaoyao S, Lili H, Yongjun Z, Houwen L. 2020. Study on secondary metabolites from spongesymbiotic Streptomyces sp. LHW2432. J. Pharm. Pract. 38(5):418–422. doi:10.12206/j.issn.1006­ 0111.202001071.

MacKinnon MC, Sargeant JM, Pearl DL, Reid­Smith RJ, Carson CA, Parmley EJ, McEwen SA. 2020. Evaluation of the health and healthcare system burden due to antimicrobial­resistant Escherichia coli infections in humans: a systematic review and metaanalysis. Antimicrob. Resist. Infect. Control 9:200. doi:10.1186/s13756­020­00863­x.

Mast Y, Stegmann E. 2019. Actinomycetes: The antibiotics producers. Antibiotics 8(3):105. doi:10.3390/antibiotics8030105.

Mushtaq MY, Choi YH, Verpoorte R, Wilson EG. 2014. Extraction for metabolomics: Access to the metabolome. Phytochem. Anal. 25(4):291–306. doi:10.1002/pca.2505.

Nirwati H, Damayanti E, Sholikhah EN, Mutofa M, Widada J. 2022. Soil­derived Streptomyces sp. GMR22 producing antibiofilm activity against Candida albicans: bioassay, untargeted LC­HRMS, and gene cluster analysis. Heliyon 8(4):e09333. doi:10.1016/j.heliyon.2022.e09333.

Pinu FR, Villas­Boas SG. 2017. Extracellular microbial metabolomics: The state of the art. Metabolites 7(3):43. doi:10.3390/metabo7030043.

Pinu FR, Villas­Boas SG, Aggio R. 2017. Analysis of intracellular metabolites from microorganisms: Quenching and extraction protocols. Metabolites 7(4):53. doi:10.3390/metabo7040053.

Quinn GA, Banat AM, Abdelhameed AM, Banat IM. 2020. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J. Med. Microbiol. 69(8):1040–1048. doi:10.1099/jmm.0.001232.

Rajaram SK, Ahmad P, Sujani Sathya Keerthana S, Jeya Cressida P, Ganesh Moorthy I, Suresh RS. 2020. Extraction and purification of an antimicrobial bioactive element from lichen associated Streptomyces olivaceus LEP7 against wound inhabiting microbial pathogens. J. King Saud Univ. ­ Sci. 32(3):2009– 2015. doi:10.1016/j.jksus.2020.01.039.

Rakhmawatie MD, Wibawa T, Lisdiyanti P, Pratiwi WR, Damayanti E, Mustofa. 2021. Potential secondary metabolite from Indonesian Actinobacteria (InaCC A758) against Mycobacterium tuberculosis. Iran. J. Basic Med. Sci. 24(8):1058–1068. doi:10.22038/ijbms.2021.56468.12601.

Rakhmawatie MD, Wibawa T, Lisdiyanti P, Pratiwi WR, Mustofa. 2019. Evaluation of crystal violet decolorization assay and resazurin microplate assay for antimycobacterial screening. Heliyon 5(8):e02263. doi:10.1016/j.heliyon.2019.e02263.

Reina JC, Pérez­Victoria I, Martín J, Llamas I. 2019. A quorum­sensing inhibitor strain of Vibrio alginolyticus blocks Qs­controlled phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Mar. Drugs 17(9):494. doi:10.3390/md17090494.

Retnowati Y, Moeljopawiro S, Djohan TS, Soetarto ES. 2018. Antimicrobial activities of actinomycete isolates from rhizospheric soils in different mangrove forests of Torosiaje, Gorontalo, Indonesia. Biodiversitas 19(6):2196–2203. doi:10.13057/biodiv/d190627.

Selim MSM, Abdelhamid SA, Mohamed SS. 2021. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol. 19(1):72. doi:10.1186/s43141­021­00156­9.

Serwecińska L. 2020. Antimicrobials and antibioticresistant bacteria: A risk to the environment and to public health. Water (Switzerland) 12(12):3313. doi:10.3390/w12123313.

Seyedsayamdost MR. 2019. Toward a global picture of bacterial secondary metabolism. J. Ind. Microbiol. Biotechnol. 46(3):301–311. doi:10.1007/s10295­019­02136­y.

Silva ACO, Santana EF, Saraiva AM, Coutinho FN, Castro RHA, Pisciottano MNC, Amorim ELC, Albuquerque UP. 2013. Which approach is more effective in the selection of plants with antimicrobial activity? Evidence­based Complement. Altern. Med. 2013:308980. doi:10.1155/2013/308980.

Song HS, Choi TR, Bhatia SK, Lee SM, Park SL, Lee HS, Kim YG, Kim JS, Kim W, Yang YH. 2020. Combination therapy using low­concentration oxacillin with palmitic acid and span85 to control clinical methicillin­resistant Staphylococcus aureus. Antibiotics 9(10):682. doi:10.3390/antibiotics9100682.

Sun C, Zhang C, Qin X, Wei X, Liu Q, Li Q, Ju J. 2018. Genome mining of Streptomyces olivaceus SCSIO T05: Discovery of olimycins A and B and assignment of absolute configurations. Tetrahedron 74(1):199– 203. doi:10.1016/j.tet.2017.11.069.

Sung JS, Collins MT. 2008. Thiopurine drugs azathioprine and 6­mercaptopurine inhibit Mycobacterium paratuberculosis growth in vitro. Antimicrob. Agents Chemother. 52(2):418–426. doi:10.1128/AAC.00678­07.

T JAS, J R, Rajan A, Shankar V. 2020. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Infect. Public Health 13(9):1255–1264. doi:10.1016/j.jiph.2020.06.023.

Tian Y, Li YL, Zhao FC. 2017. Secondary metabolites from polar organisms. Mar. Drugs 15(3):1–30. doi:10.3390/md15030028.

Um S, Lee J, Kim SH. 2022. Lobophorin producing endophytic Streptomyces olivaceus JB1 associated with Maesa japonica (Thunb.) Moritzi & Zoll. Front. Microbiol. 13:881253. doi:10.3389/fmicb.2022.881253.

Van Ingen J, Boeree MJ, Van Soolingen D, Mouton JW. 2012. Resistance mechanisms and drug susceptibility testing of nontuberculous Mycobacteria. Drug Resist. Updat. 15(3):149–161. doi:10.1016/j.drup.2012.04.001.

van Rensburg W, Laubscher WE, Rautenbach M. 2021. High throughput method to determine the surface activity of antimicrobial polymeric materials. MethodsX 8:101593. doi:10.1016/j.mex.2021.101593.

Voytsekhovskaya IV, Axenov­Gribanov DV, Murzina SA, Pekkoeva SN, Protasov ES, Gamaiunov SV, Timofeyev MA. 2018. Estimation of antimicrobial activities and fatty acid composition of actinobacteria isolated from water surface of underground lakes from Badzheyskaya and Okhotnichya caves in Siberia. PeerJ 6:e5832. doi:10.7717/peerj.5832.

Watson DG. 2013. A rough guide to metabolite identification using high resolution liquid chromatography mass spectrometry in metabolomic profiling in metazoans. Comput. Struct. Biotechnol. J. 4:e201301005. doi:10.5936/csbj.201301005.

Wei Y, Zhang L, Zhou Z, Yan X. 2018. Diversity of gene clusters for polyketide and nonribosomal peptide biosynthesis revealed by metagenomic analysis of the yellow sea sediment. Front. Microbiol. 9:295. doi:10.3389/fmicb.2018.00295.

World Health Organization. 2017. Prioritization of pathogens to guide discovery, research, and development of new antibiotics for drug­resistant bacterial infections, including tuberculosis. Geneva: World Health Organization.

World Health Organization. 2019a. Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. Geneva: World Health Organization.

World Health Organization. 2019b. Antibacterial agents in preclinical development: an open access database. Geneva: World Health Organization.

Zhang C, Ding W, Qin X, Ju J. 2019. Genome sequencing of Streptomyces olivaceus SCSIO T05 and activated production of lobophorin CR4 via metabolic engineering and genome mining. Mar. Drugs 17(10):593. doi:10.3390/md17100593.



DOI: https://doi.org/10.22146/ijbiotech.82376

Article Metrics

Abstract views : 351 | views : 278

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.