Effect of medium supplementations and extraction conditions on cellulase production through solid state fermentation of oil palm empty fruit bunches


Vita Wonoputri(1*), Jansen Wijaya(2), Joevin Saudalimka(3), Ronny Purwadi(4)

(1) Chemical Engineering Department, Institut Teknologi Bandung (ITB), Jalan Ganesa 10, Bandung 40132, Indonesia
(2) Chemical Engineering Department, Institut Teknologi Bandung (ITB), Jalan Ganesa 10, Bandung 40132, Indonesia
(3) Chemical Engineering Department, Institut Teknologi Bandung (ITB), Jalan Ganesa 10, Bandung 40132, Indonesia
(4) Chemical Engineering Department, Institut Teknologi Bandung (ITB), Jalan Ganesa 10, Bandung 40132, Indonesia; Food Engineering Department, Institut Teknologi Bandung, Jalan Let. Jen. Purn. Dr. (HC). Mashudi No.1/Jalan Raya Jatinangor KM 20,75, Sumedang 45363, Indonesia
(*) Corresponding Author


In this study, cellulase enzyme was produced through solid state fermentation (SSF), employing oil palm empty fruit bunches (EFB) as the primary substrate. Two key aspects were explored to enhance crude enzyme yield, which are medium supplementation effects during SSF and cellulase recovery. During medium supplementation, glucose and/or Tween 80 were added alongside EFB substrate and other nutrients. Enzyme yield was determined using a filter paper assay and expressed as enzyme activity. The initial addition of glucose during fermentation led to increased crude enzyme activity, as measured by the filter paper assay. The peak crude enzyme activity was observed with the addition of 3 mg of glucose, with higher amounts showing no further increase in activity. Conversely, the addition of Tween 80 did not yield any significant increase in crude enzyme activity across all concentrations tested. The extraction conditions were varied to study cellulase recovery, specifically by adjusting the solid‐to‐solvent ratio and the number of extraction stages. Higher enzyme activity was achieved with lower solid‐to‐liquid ratios, as the increased solvent volume facilitated greater enzyme extraction. However, increasing the number of extraction steps did not significantly affect the resulting cellulase activity. Overall, this research underscores the need for further process optimization for cellulase production via SSF, utilizing the widely available EFB in Indonesia.


Cellulase; Oil palm empty fruit bunches; Solid state fermentation

Full Text:



Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, Lu G. 2018. Carbon catabolite repression in filamentous fungi. Int. J. Mol. Sci. 19(1):1–23. doi:10.3390/ijms19010048.

Ahamed A, Vermette P. 2009. Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Bioresour. Technol. 100(23):5979–5987. doi:10.1016/j.biortech.2009.02.070.

Behera SS, Ray RC. 2016. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int. J. Biol. Macromol. 86:656–669. doi:10.1016/j.ijbiomac.2015.10.090.

Bischof R, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP. 2013. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol. Biofuels 6(1):1–14. doi:10.1186/1754- 6834-6-127.

Callow NV, Ju LK. 2012. Promoting pellet growth of Trichoderma reesei Rut C30 by surfactants for easy separation and enhanced cellulase production. Enzyme Microb. Technol. 50(6-7):311–317. doi:10.1016/j.enzmictec.2012.02.006.

Castilho LR, Medronho RA, Alves TL. 2000. Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Bioresour. Technol. 71(1):45–50. doi:10.1016/S0960-8524(99)00058-9.

Díaz AB, Caro I, de Ory I, Blandino A. 2007. Evaluation of the conditions for the extraction of hydrolitic enzymes obtained by solid state fermentation from grape pomace. Enzyme Microb. Technol. 41(3):302–306. doi:10.1016/j.enzmictec.2007.02.006.

Hari Krishna S, Sekhar Rao KC, Suresh Babu J, Srirami Reddy D. 2000. Studies on the production and application of cellulase from Trichoderma reesei QM-9414. Bioprocess Eng. 22(5):467–470. doi:10.1007/s004490050760.

Heng JLS, Hamzah H. 2022. Effects of different parameters on cellulase production by Trichoderma harzianum TF2 using solidstate fermentation (SSF). Indones. J. Biotechnol. 27(2):80–86. doi:10.22146/ijbiotech.66549.

Hölker U, Höfer M, Lenz J. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64(2):175– 186. doi:10.1007/s00253-003-1504-3.

Hsieh CWC, Cannella D, Jørgensen H, Felby C, Thygesen LG. 2014. Cellulase inhibition by high concentrations of monosaccharides. J. Agric. Food Chem. 62(17):3800–3805. doi:10.1021/jf5012962.

Jo KI, Lee YJ, Kim BK, Lee BH, Chung CH, Nam SW, Kim SK, Lee JW. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13(2):182–188. doi:10.1007/s12257-007-0149-y.

Jönsson LJ, Martín C. 2016. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199:103–112. doi:10.1016/j.biortech.2015.10.009.

Ju LK, Afolabi OA. 1999. Wastepaper hydrolysate as soluble inducing substrate for cellulase production in continuous culture of Trichoderma reesei. Biotechnol. Prog. 15(1):91–97. doi:10.1021/bp980116n.

Ju X, Bowden M, Engelhard M, Zhang X. 2014. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates. Appl. Microbiol. Biotechnol. 98(10):4409–442. doi:10.1007/s00253-013-5450-4.

Kang SW, Park YS, Lee JS, Hong SI, Kim SW. 2004. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91(2):153–156. doi:10.1016/S0960-8524(03)00172-X.

Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletschke BI, Singh A, Karp M. 2016. Revisiting cellulase production and redefining current strategies based on major challenges. Renew. Sustain. Energy Rev. 55:249–272. doi:10.1016/j.rser.2015.10.132.

Li Y, Liu C, Bai F, Zhao X. 2016. Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour. Technol. 216:503–510. doi:10.1016/j.biortech.2016.05.108.

Liu J, Yuan X, Zeng G, Shi J, Chen S. 2006. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem. 41(11):2347–2351. doi:10.1016/j.procbio.2006.05.014.

Mandels M, Parrish FW, Reese ET. 1962. Sophorose as an inducer of cellulase in Trichoderma viride. J. Bacteriol. 83(Cx):400–408. doi:10.1128/jb.83.2.400-408.1962.

Marín M, Sánchez A, Artola A. 2019. Production and recovery of cellulases through solid-state fermentation of selected lignocellulosic wastes. J. Clean. Prod. 209:937–946. doi:10.1016/j.jclepro.2018.10.264.

Nair A, Sarma SJ. 2021. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol. Res. 251:126831. doi:10.1016/j.micres.2021.126831.

Niranjane AP, Madhou P, Stevenson TW. 2007. The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantea. Enzyme Microb. Technol. 40(6):1464–1468. doi:10.1016/j.enzmictec.2006.10.041.

Pardo AG. 1996. Effect of surfactants on cellulase production by Nectria catalinensis. Curr. Microbiol. 33(4):275–278. doi:10.1007/s002849900113.

Passos DdF, Pereira N, de Castro AM. 2018. A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr. Opin. Green Sustain. Chem. 14:60–66. doi:10.1016/j.cogsc.2018.06.003.

Pirota RD, Miotto LS, Delabona PS, Farinas CS. 2013. Improving the extraction conditions of endoglucanase produced by Aspergillus niger under solid-state fermentation. Brazilian J. Chem. Eng. 30(1):117–123. doi:10.1590/S0104-66322013000100013.

Prévot V, Lopez M, Copinet E, Duchiron F. 2013. Comparative performance of commercial and laboratory enzymatic complexes from submerged or solid-state fermentation in lignocellulosic biomass hydrolysis. Bioresour. Technol. 129:690–693. doi:10.1016/j.biortech.2012.11.135.

Shahriarinour M, Wahab MNA, Mohamad R, Mustafa S, Ariff AB. 2011. Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. African J. Biotechnol. 10(38):7459– 7467.

Singh A, Bajar S, Devi A, Pant D. 2021. An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresour. Technol. Reports 14:100652. doi:10.1016/j.biteb.2021.100652.

Ülger C, Salam N. 2001. Partitioning of industrial cellulase in aqueous two-phase systems from Trichoderma viride QM9414. Process Biochem. 36(11):1075– 1080. doi:10.1016/S0032-9592(01)00144-3.

Verma N, Kumar V, Bansal MC. 2021. Valorization of waste biomass in fermentative production of cellulases: A review. Waste and Biomass Valorization 12(2):613–640. doi:10.1007/s12649-020-01048-8.

Wonoputri V, Subiantoro, Kresnowati MTAP, Purwadi R. 2018. Solid state fermentation parameters effect on cellulase production from empty fruit bunch. Bull. Chem. React. Eng. Catal. 13(3):553– 559. doi:10.9767/bcrec.13.3.1964.553-559.

Xiao Z, Zhang X, Gregg DJ, Saddler JN. 2004. Effects of sugar inhibition on cellulases and β- glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. - Part A Enzym. Eng. Biotechnol. 115(1-3):1115–1126. doi:10.1385/ABAB:115:1-3:1115.

Yoon LW, Ang TN, Ngoh GC, Chua ASM. 2014. Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass and Bioenergy 67:319–338. doi:10.1016/j.biombioe.2014.05.013.

Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G. 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sustain. Energy Rev. 71:475–501. doi:10.1016/j.rser.2016.12.076.

Zeng GM, Shi JG, Yuan XZ, Liu J, Zhang ZB, Huang GH, Li JB, Xi BD, Liu HL. 2006. Effects of Tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost. Enzyme Microb. Technol. 39(7):1451–1456. doi:10.1016/j.enzmictec.2006.03.035.

Zhu Y, Xin F, Zhao Y, Chang Y. 2014. An integrative process of bioconversion of oil palm empty fruit bunch fiber to ethanol with on-site cellulase production. Bioprocess Biosyst. Eng. 37(11):2317–2324. doi:10.1007/s00449-014-1209-2.

DOI: https://doi.org/10.22146/ijbiotech.82363

Article Metrics

Abstract views : 953 | views : 920


  • There are currently no refbacks.

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.