Chitosan Xylotrupes gideon encapsulated lemongrass leaf ethanol extract reduce H2O2‐induced oxidative stress in human dermal fibroblast

https://doi.org/10.22146/ijbiotech.81544

Komariah Komariah(1*), Pretty Trisfilha(2), Rahman Wahyudi(3), Nada Erica(4), Didi Nugroho(5), Yessy Ariesanti(6), Sarat Kumar Swain(7)

(1) Department of Oral Biology sub‐division of Histology Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia
(2) Department of Oral Biology sub‐division of Oral Pathology, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia
(3) Department of Oral Biology sub‐division of Oral Pathology, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia
(4) Student of Dentistry, Faculty of Dentistry, Trisakti University, Jakarta 11440, Indonesia
(5) Department of Oral Biology sub‐division of Pharmacology, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia
(6) Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia
(7) Department of Chemistry, Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur-768018 Orissa, India
(*) Corresponding Author

Abstract


During phagocytosis, phagocyte cells discharge reactive oxygen species referred to as respiratory bursts, inducing a rise in pro‐oxidants and subjecting the cell to oxidative stress. Such stress is a biological mechanism related to an imbalance in pro‐oxidant/antioxidant homeostasis, which generates toxic reactive oxygen. Encapsulation is a coating process to improve the stability of bioactive compounds from lemongrass extract. Therefore, this study aims to determine the encapsulation activity of lemongrass leaf extract with chitosan X. gideon (LEChXg) to reduce the oxidative stress of fibroblasts. The research used the human dermal fibroblast (HDF) cell line, comprising negative and positive controls and use of LEChXg 100, 200, 300, 400, and 500 µg/mL. HDF cell migration was evaluated by employing the scratch wound healing method and the wound closure was oberseved at 0, 2, 4, 6, and 24 h intervals. The cell proliferation was observed at 24, 48, and 72 h using CCK‐8 at a 450 nm wavelength. The results showed that the observations at 0, 2, and 4 h did not demonstrate any significant difference on the cell migration (p > 0.05) among the groups. However, the wound closure at 4 and 6 h showed a significant difference (p < 0.05) with LEChXg 300 µg/mL. Despite the lack of any significant variation observed up to 24 h, fibroblast subjected to the stressor did not achieve complete closure. The groups treated with LEChXg were more stable in maintaining fibroblast proliferation up to the end of the observation than those with stressors at 24, 48, and 72 h. Fibroblast induced with a stressor was also more stable in maintaining migration and proliferation in groups receiving LEChXg 300 µg/mL.


Keywords


Chitosan X. gideon; Lemongrass leaf; Migration; Oxidative stress; Proliferation

Full Text:

PDF


References

Agarwal M, Agarwal MK, Shrivastav N, Pandey S, Gaur P. 2018. A simple and effective method for preparation of chitosan from chitin. Int. J. Life-Sciences Sci. Res. 4(2):1721–1728. doi:10.21276/ijlssr.2018.4.2.18.

Andikoputri SF, Komariah K, Roeslan MO, Ranggaini D, Bustami DA. 2021. Nano chitosan encapsulation of Cymbopogon citratus leaf extract promotes ROS induction leading to apoptosis in human squamous cells (HSC-3). Curr. Issues Pharm. Med. Sci. 34(3):134 – 137. doi:10.2478/cipms-2021-0026.

Arief H, Widodo MA. 2018. Peranan Stres Oksidatif pada Proses Penyembuhan Luka [Rules of oxidative stress in wound healing]. J. Ilm. Kedokt. Wijaya Kusuma 5(2):22–28. doi:10.30742/jikw.v5i2.338.

Baharlouei P, Rahman A. 2022. Chitin and chitosan: Prospective biomedical applications in drug delivery, cancer treatment, and wound healing. Mar. Drugs 20(7):460. doi:10.3390/md20070460.

Beconcini D, Fabiano A, Zambito Y, Berni R, Santoni T, Piras AM, Di Stefano R. 2018. Chitosan-based nanoparticles containing cherry extract from Prunus avium L. to improve the resistance of endothelial cells to oxidative stress. Nutrients 10(11):1598. doi:10.3390/nu10111598.

Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. 2014. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 94(2):329–354. doi:10.1152/physrev.00040.2012.

Budi S, Asih Suliasih B, Rahmawati I, Erdawati. 2020. Size-controlled chitosan nanoparticles prepared using ionotropic gelation. ScienceAsia 46(4):457–461. doi:10.2306/scienceasia1513-1874.2020.059.

Buranasin P, Mizutani K, Iwasaki K, Mahasarakham CPN, Kido D, Takeda K, Izumi Y. 2018. High glucoseinduced oxidative stress impairs proliferation and migration of human gingival fibroblasts. PLoS One 13(8):e0201855. doi:10.1371/journal.pone.0201855.

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204–7218. doi:10.18632/oncotarget.23208.

Clayton KN, Salameh JW, Wereley ST, Kinzer-Ursem TL. 2016. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics 10(5):054107. doi:10.1063/1.4962992.

Comino-Sanz IM, López-Franco MD, Castro B, Pancorbo-Hidalgo PL. 2021. The role of antioxidants on wound healing: A review of the current evidence. J. Clin. Med. 10(16):3558. doi:10.3390/jcm10163558.

de Paiva WS, Queiroz MF, Sabry DA, de Azevedo Santiago ALCM, Sassaki GL, de Lima Batista AC, Rocha HAO. 2021. Preparation, structural characterization, and property investigation of gallic acidgrafted fungal chitosan conjugate. J. Fungi 7(10):812. doi:10.3390/jof7100812.

Deng L, Du C, Song P, Chen T, Rui S, Armstrong DG, Deng W. 2021. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid. Med. Cell. Longev. 2021:8852759. doi:10.1155/2021/8852759.

Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P. 2020. Nanosystems for the encapsulation of natural products: The case of chitosan biopolymer as a matrix. Pharmaceutics 12(7):669. doi:10.3390/pharmaceutics12070669.

Di Santo MC, D’ Antoni CL, Rubio APD, Alaimo A, Perez OE. 2021. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications − A review. Biomed. Pharmacother. 142:111970. doi:10.1016/j.biopha.2021.111970.

Dipahayu D, Kusumo GG. 2021. Formulasi dan evaluasi nano partikel ekstrak etanol daun ubi jalar ungu (Ipomoea batatas L.) varietas Antin-3 [Formulation and evaluation of nano particles ethanol extract of purple sweet potato leaves (Ipomoea batatas L.) Antin-3]. J. Sains dan Kesehat. 3(6):781–785. doi:10.25026/jsk.v3i6.818.

Felicia F, Komariah K, Kusuma I. 2022. Antioxidant potential of lemongrass (Cymbopogon citratus) leaf ethanol extract in HSC-3 cancer cell line. Trop. J. Nat. Prod. Res. 6(4):520–528. doi:10.26538/tjnpr/v6i4.10.

Fitria N, Bustami DA, Komariah K, Kusuma I. 2022. The antioxidant activity of lemongrass leaves extract against fibroblasts oxidative stress. Brazilian Dent. Sci. 25(4):e3434. doi:10.4322/bds.2022.e3434.

Grgić J, Šelo G, Planinić M, Tišma M, Bucić-Kojić A. 2020. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants 9(10):923. doi:10.3390/antiox9100923.

Idacahyati K, Wulandari WT, Gustaman F, Indra I. 2021. Synthesis of encapsulated Chromolaena odorata leaf extract in chitosan nanoparticle by using ionic gelation method and its antioxidant activity. Int. J. Appl. Pharm. 13(Special Issue 4):112–115. doi:10.22159/IJAP.2021.V13S4.43828.

Ismail Z, Harun NA. 2019. Synthesis and characterizations of hydrophilic pHEMA nanoparticles via inverse miniemulsion polymerization. Sains Malaysiana 48(8):1753–1759. doi:10.17576/jsm- 2019-4808-22.

Jimi S, Jaguparov A, Nurkesh A, Sultankulov B, Saparov A. 2020. Sequential delivery of cryogel released growth factors and cytokines accelerates wound healing and improves tissue regeneration. Front. Bioeng. Biotechnol. 8:345. doi:10.3389/fbioe.2020.00345.

Juliantoni Y, Hajrin W, Subaidah WA. 2020. Nanoparticle formula optimization of juwet seeds extract (Syzygium cumini) using simplex lattice design method. J. Biol. Trop. 20(3):416–422. doi:10.29303/jbt.v20i3.2124.

Karmakar S. 2019. Particle size distribution and zeta potential based on dynamic light scattering: Techniques to characterize stability and surface charge distribution of charged colloids. January. Studium Press(India)Pvt Ltd. p. 117–159.

Kauanova S, Urazbayev A, Vorobjev I. 2021. The frequent sampling of wound scratch assay reveals the “Opportunity” window for quantitative evaluation of cell motility-impeding drugs. Front. Cell Dev. Biol. 9:640972. doi:10.3389/fcell.2021.640972.

Kim A, Ng WB, Bernt W, Cho NJ. 2019. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. Sci. Rep. 9(1):2639. doi:10.1038/s41598-019-38915-x.

Komariah AK, Parcelia S, Trenggono BS. 2019. Pretreatment of nano chitosan and nano calcium (X. gideon) in the application of acetic acid to enamel hardness. Int. J. Adv. Biol. Biomed. Res. 7:246–54. doi:10.33945/sami/ijabbr.2019.3.6.

Lendahl U, Muhl L, Betsholtz C. 2022. Identification, discrimination and heterogeneity of fibroblasts. Nat. Commun. 13(1):3409. doi:10.1038/s41467-022- 30633-9.

Lionetti MC, Mutti F, Soldati E, Fumagalli MR, Coccé V, Colombo G, Astori E, Miani A, Milzani A, DalleDonne I, Ciusani E, Costantini G, La Porta CA. 2019. Sulforaphane cannot protect human fibroblasts from repeated, short and sublethal treatments with hydrogen peroxide. Int. J. Environ. Res. Public Health 16(4):657. doi:10.3390/ijerph16040657.

Maria LGC, Komariah, Veronica G. 2021. Synthesis of silver nanoparticles from lemongrass leaves induced wound healing by reduction ROS fibroblasts. In: InHeNce 2021 - 2021 IEEE Int. Conf. Heal. Instrum. Meas. Nat. Sci. p. 1–5. doi:10.1109/InHeNce52833.2021.9537225.

Mohammed MA, Syeda JT, Wasan KM, Wasan EK. 2017. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4):53. doi:10.3390/pharmaceutics9040053.

Muthu M, Gopal J, Chun S, Devadoss AJP, Hasan N, Sivanesan I. 2021. Crustacean wastederived chitosan: Antioxidant properties and future perspective. Antioxidants 10(2):228. doi:10.3390/antiox10020228.

Negi A, Kesari KK. 2022. Chitosan nanoparticle encapsulation of antibacterial essential oils. Micromachines 13(8):1265. doi:10.3390/mi13081265.

Nita M, Grzybowski A. 2016. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev. 2016:3164734. doi:10.1155/2016/3164734.

Ozougwu JC. 2016. The role of reactive oxygen species and antioxidants in oxidative stress. Int. J. Res. Pharm. Biosci. 3(6):1–8.

Pan D, Machado L, Bica CG, Machado AK, Steffani JA, Cadoná FC. 2022. In vitro evaluation of antioxidant and anticancer activity of lemongrass (Cymbopogon citratus (D.C.) Stapf). Nutr. Cancer 74(4):1474–1488. doi:10.1080/01635581.2021.1952456.

Pehlivan FE. 2017. Vitamin C: An antioxidant agent. Vitam. C 2:23–35. doi:10.5772/intechopen.69660. Pellis A, Guebitz GM, Nyanhongo GS. 2022. Chitosan: Sources, processing, and modification techniques. Gels 8(7):393. doi:10.3390/gels8070393.

Phaniendra A, Jestadi DB, Periyasamy L. 2015. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 30(1):11–26. doi:10.1007/s12291-014-0446-0.

Pisoschi AM, Pop A. 2015. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 97:55–74. doi:10.1016/j.ejmech.2015.04.040.

Prakash S, Mishra R, Malviya R, Kumar Sharma P. 2014. Measurement techniques and pharmaceutical applications of zeta potential: A review. J. Chronother. Drug Deliv. 5(2):33–40.

Rahim MA, Shoukat A, Khalid W, Ejaz A, Itrat N, Majeed I, Koraqi H, Imran M, Nisa MU, Nazir A, Alansari WS, Eskandrani AA, Shamlan G, AL-Farga A. 2022. A narrative review on various oil extraction methods, encapsulation processes, fatty acid profiles, oxidative stability, and medicinal properties of black seed (Nigella sativa). Foods 11(18):2826. doi:10.3390/foods11182826.

Roriz CL, Barros L, Carvalho AM, Santos-Buelga C, Ferreira IC. 2014. Pterospartum tridentatum, Gomphrena globosa, and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Res. Int. 62:684–693. doi:10.1016/j.foodres.2014.04.036.

Toma AI, Fuller JM, Willett NJ, Goudy SL. 2021. Oral wound healing models and emerging regenerative therapies. Transl. Res. 236:17–34. doi:10.1016/j.trsl.2021.06.003.

Tsuneda T. 2020. Fenton reaction mechanism generating no OH radicals in Nafion membrane decomposition. Sci. Rep. 10(1):18144. doi:10.1038/s41598- 020-74646-0.

Veronica G, Komariah, Maria LGC. 2021. Microencapsulation of lemongrass leaves effect on reactive oxygen species (ROS) fibroblasts. In: InHeNce 2021 - 2021 IEEE Int. Conf. Heal. Instrum. Meas. Nat. Sci. p. 1–5. doi:10.1109/InHeNce52833.2021.9537219.

Waheed TO, Hahn O, Sridharan K, Mörke C, Kamp G, Peters K. 2022. Oxidative stress response in adipose tissue-derived mesenchymal stem/stromal cells. Int. J. Mol. Sci. 23(21):13435. doi:10.3390/ijms232113435.

Zakiawati D, Nur’aeny N, Setiadhi R. 2020. Distribution of oral ulceration cases in oral medicine integrated installation of Universitas Padjadjaran Dental Hospital. Padjajaran J. Dent. 32(3):237–242. doi:10.24198/pjd.vol32no3.23664.



DOI: https://doi.org/10.22146/ijbiotech.81544

Article Metrics

Abstract views : 1317 | views : 1186

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.