Biophysical characterization of folded state type II luciferase‐like monooxygenase
Adinda Fitri Salsabila(1), Abidah Tauchid(2), Muhammad Saifur Rohman(3*), Donny Widianto(4), Sebastian Margino(5)
(1) Department of Agricultural Microbiology, Faculty of Agriculture, Jl. Flora, Kompleks Bulaksumur, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(2) Department of Agricultural Microbiology, Faculty of Agriculture, Jl. Flora, Kompleks Bulaksumur, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(3) Department of Agricultural Microbiology, Faculty of Agriculture, Jl. Flora, Kompleks Bulaksumur, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(4) Department of Agricultural Microbiology, Faculty of Agriculture, Jl. Flora, Kompleks Bulaksumur, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(5) Department of Agricultural Microbiology, Faculty of Agriculture, Jl. Flora, Kompleks Bulaksumur, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
We noticed that the Priestia megaterium genome contains five Luciferase‐like monooxygenase (LLM) encoding genes, however, their functions are unknown. The objective of this work was to characterize the biophysical properties of the recombinant LLM2 from Priestia megaterium PSA10 through in vitro and in silico approaches. We successfully cloned into the pET vector system and expressed the recombinant LLM2 in Escherichia coli BL21(DE3). The recombinant LLM2 was overproduced and purified in the form of an inclusion body with a molecular weight of ±39.5 kDa when it was analyzed in 15% SDS‐PAGE. The inclusion body of recombinant LLM2 was then refolded and characterized for its biophysical properties by measuring the UV spectrum of 200 to 250 nm wavelength and determining the change of enthalpy (ΔH) and entropy (ΔS) at the melting temperature. The refolded recombinant LLM2 exhibited a strong spectrum at 205 nm, while the unfolded recombinant LLM2 did not. The Tm, ΔHTm, and ΔSTm values of the refolded recombinant LLM2 were determined to be 318.31±4.4 K, 11.76±1.3 kJ.mol‐1, and (3.74±0.48)x10‐2 kJ.mol‐1.K‐1, respectively. The predicted 3D structure of LLM2 showed that the protein contains the TIM‐barrel, resembling the common global fold of bacterial luciferases. Determination of the cofactor preference suggested that the LLM2 preferred FAD for its cofactor.
Keywords
References
Aufhammer SW, Warkentin E, Ermler U, Hagemeier CH, Thauer RK, Shima S. 2005. Crystal structure of methylenetetrahydromethanopterin reductase (Mer) in complex with coenzyme F 420 : Architecture of the F 420 /FMN binding site of enzymes within the nonprolyl cis peptide containing bacterial luciferase family . Protein Sci. 14(7):1840–1849. doi:10.1110/ps.041289805.
Bartlett GJ, Choudhary A, Raines RT, Woolfson DN. 2010. n→ π* interactions in proteins. Nature chemical biology 6(8):615–620. doi:10.3389/fmolb.2020.598912. Beaupre BA, Moran GR. 2020. N5 Is the New C4a: Biochemical Functionalization of Reduced Flavins at the N5 Position. Front. Mol. Biosci. 7:598912. doi:10.3389/fmolb.2020.598912.
Campbell ZT, Baldwin TO. 2009. Fre is the major flavin reductase supporting bioluminescence from Vibrio harveyi luciferase in Escherichia coli. J. Biol. Chem. 284(13):8322–8328. doi:10.1074/jbc.M808977200. Chaiyen P, Fraaije MW, Mattevi A. 2012. The enigmatic reaction of flavins with oxygen. Trends Biochem. Sci. 37(9):373–380. doi:10.1016/j.tibs.2012.06.005.
Eberhardt J, SantosMartins D, Tillack AF, Forli S. 2021. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 61(8):3891–3898. doi:10.1021/acs.jcim.1c00203.
Fürst MJ, Boonstra M, Bandstra S, Fraaije MW. 2019. Stabilization of cyclohexanone monooxygenase by computational and experimental library design. Biotechnol. Bioeng. 116(9):2167–2177. doi:10.1002/bit.27022.
Garma LD, Medina M, Juffer AH. 2016. Structurebased classification of FAD binding sites: A comparative study of structural alignment tools. Proteins Struct. Funct. Bioinforma. 84(11):1728–1747. doi:10.1002/prot.25158.
Ghisla S, Massey V. 1989. Mechanisms of flavoproteincatalyzed reactions. Eur. J. Biochem. 181(1):1– 17. doi:10.1111/j.14321033.1989.tb14688.x.
Hefti MH, Vervoort J, Van Berkel WJ. 2003. Deflavination and reconstitution of flavoproteins: Tackling fold and function. Eur. J. Biochem. 270(21):4227–4242. doi:10.1046/j.14321033.2003.03802.x.
Hühner J, InglesPrieto Á, Neusüß C, Lämmerhofer M, Janovjak H. 2015. Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in mammalian model cells by CE with LEDinduced fluorescence detection. Electrophoresis 36(4):518–525. doi:10.1002/elps.201400451.
Huijbers MM, MartínezJúlvez M, Westphal AH, DelgadoArciniega E, Medina M, Van Berkel WJ. 2017. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor. Sci. Rep. 7:1–13. doi:10.1038/srep43880.
Joosten V, van Berkel WJ. 2007. Flavoenzymes. Curr. Opin. Chem. Biol. 11(2):195–202. doi:10.1016/j.cbpa.2007.01.010.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SA, Ballard AJ, Cowie A, RomeraParedes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):538–589. doi:10.1038/s41586 021038192.
Krow GR. 1993. The BaeyerVilligerOxidation of Ketones and Aldehydes. John Wiley & Sons, Inc. doi:10.1002/0471264180.or043.03.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. doi:10.1038/227680a0.
León I, Alonso ER, Cabezas C, Mata S, Alonso JL. 2019. Unveiling the n→π* interactions in dipeptides. Commun. Chem. 2(1):1–8. doi:10.1038/s42004018 01032.
Lienhart WD, Gudipati V, MacHeroux P. 2013. The human flavoproteome. Arch. Biochem. Biophys. 535(2):150–162. doi:10.1016/j.abb.2013.02.015.
MacHeroux P, Kappes B, Ealick SE. 2011. Flavogenomics A genomic and structural view of flavindependent proteins. FEBS J. 278(15):2625–2634. doi:10.1111/j.17424658.2011.08202.x.
Machuca MA, Roujeinikova A. 2017. Method for efficient refolding and purification of chemoreceptor ligand binding domain. J. Vis. Exp. 2017(130):57092. doi:10.3791/57092.
Maier S, Pflüger T, Loesgen S, Asmus K, Brötz E, Paululat T, Zeeck A, Andrade S, Bechthold A. 2014. Insights into the bioactivity of mensacarcin and epoxide formation by MsnO8. ChemBioChem 15(5):749–756. doi:10.1002/cbic.201300704.
Massey V. 1994. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269(36):22459–62. doi:10.1016/s0021 9258(17)316642.
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold: making protein folding accessible to all. Nat. Methods 19(6):679– 682. doi:10.1038/s41592022014881.
Morris GM, Ruth H, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. 2009. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 30(16):2785–2791. doi:10.1002/jcc.21256.
Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. 1995. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4(11):2411–2423. doi:10.1002/pro.5560041120.
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJ. 2021. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol. Adv. 51:107712. doi:10.1016/j.biotechadv.2021.107712.
Pimviriyakul P, Chaiyen P. 2020. Overview of flavindependent enzymes, volume 47. Elsevier. doi:10.1016/bs.enz.2020.06.006.
Poklar N, Vesnaver G. 2000. Thermal Denaturation of Proteins Studied by UV Spectroscopy. J. Chem. Educ. 77(3):380–382. doi:10.1021/ed077p380.
Pradani L, Rohman MS, Margino S. 2020. The structural insight of class III of polyhydroxyalkanoate synthase from Bacillus sp. PSA10 as revealed by in silico analysis. Indones. J. Biotechnol. 25(1):33–42. doi:10.22146/ijbiotech.53717.
Renz M, Meunier B. 1999. 100 years of BaeyerVilliger oxidations. European J. Org. Chem. 1999(4):737–750. doi:10.1002/(sici)1099 0690(199904)1999:4<737::aidejoc737>3.0.co;2b.
Rohman MS. 2022. Bionformatics analysis of the Luciferase_like monooxygenase from Priestia megaterium DSM319 genome. Zenodo doi:https://doi.org/10.5281/zenodo.7151660.
Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. 2018. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chem. Rev. 118(4):1742–1769. doi:10.1021/acs.chemrev.7b00650.
Saraiva MA. 2020. Interpretation of αsynuclein UV absorption spectra in the peptide bond and the aromatic regions. J. Photochem. Photobiol. B Biol. 212:112022. doi:10.1016/j.jphotobiol.2020.112022.
Sherry D, Worth R, Sayed Y. 2020. TwoStep Preparation of Highly Pure, Soluble HIV Protease from Inclusion Bodies Recombinantly Expressed in Escherichia coli. Curr. Protoc. Protein Sci. 100(1):e106. doi:10.1002/cpps.106.
Tinikul R, Chunthaboon P, Phonbuppha J, Paladkong T. 2020. Bacterial luciferase: Molecular mechanisms and applications, volume 47. Elsevier. doi:10.1016/bs.enz.2020.06.001.
Trott O, Olson AJ. 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. p. 455–461. doi:10.1002/jcc.21334.
van Berkel WJ, Kamerbeek NM, Fraaije MW. 2006. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol. 124(4):670–689. doi:10.1016/j.jbiotec.2006.03.044.
Wingfield PT, Palmer I, Liang SM. 2014. Folding and purification of insoluble (inclusion body) proteins from Escherichia coli. Curr. Protoc. Protein Sci. 2014:6.5.1– 6.5.30. doi:10.1002/0471140864.ps0605s78.
DOI: https://doi.org/10.22146/ijbiotech.75783
Article Metrics
Abstract views : 2533 | views : 860 | views : 1175Refbacks
- There are currently no refbacks.
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.