In silico analysis of antibiotic resistance genes in Lactiplantibacillus plan‐ tarum subsp. plantarum Kita‐3

https://doi.org/10.22146/ijbiotech.72550

Angelia Wattimury(1), Dian Anggraini Suroto(2*), Tyas Utami(3), Rachma Wikandari(4), Endang Sutriswati Rahayu(5)

(1) Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street, No. 1, Bulaksumur, Yogyakarta 5281, Indonesia
(2) Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street, No. 1, Bulaksumur, Yogyakarta 55281, Indonesia; Center for Food and Nutrition Studies, Universitas Gadjah Mada, Teknika Utara Street, Yogyakarta 55281, Indonesia; University Center of Excellence for Research and Application on Integrated Probiotic Industry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(3) Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street, No. 1, Bulaksumur, Yogyakarta 55281, Indonesia; Center for Food and Nutrition Studies, Universitas Gadjah Mada, Teknika Utara Street, Yogyakarta 55281, Indonesia; University Center of Excellence for Research and Application on Integrated Probiotic Industry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(4) Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street, No. 1, Bulaksumur, Yogyakarta 55281, Indonesia; Center for Food and Nutrition Studies, Universitas Gadjah Mada, Teknika Utara Street, Yogyakarta 55281, Indonesia
(5) Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street, No. 1, Bulaksumur, Yogyakarta 55281, Indonesia; Center for Food and Nutrition Studies, Universitas Gadjah Mada, Teknika Utara Street, Yogyakarta 55281, Indonesia; University Center of Excellence for Research and Application on Integrated Probiotic Industry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


The absence of transferable antibiotic resistance genes is required for the safety of commercial probiotics. Previous studies have found that antibiotic resistance genes on plasmids in Lactobacilli make them unsafe for food purposes due to the genes’ ability to transfer to pathogenic microorganisms. In contrast, bacteria from the Lactobacillaceae family are widely used as a probiotic. This study assessed the antibiotic susceptibility of Lactiplantibacillus plantarum subsp. plantarum Kita‐3 (previously known as Lactobacillus plantarum K‐3) isolated from Halloumi cheese using eight antibiotics. Genome sequencing was performed using the Illumina NovaSeq 6000 sequencing platform to detect the presence of antibiotic resistance genes on chromosomes and plasmids. L. plantarum subsp. plantarum Kita‐3 was resistant to clindamycin, streptomycin, and chloramphenicol but susceptible to tetracycline, ampicillin, kanamycin, erythromycin, and ciprofloxacin. Genome sequencing of L. plantarum subsp. plantarum Kita‐3 verified the presence of tetracycline, fluoroquinolones, β‐lactamase resistance genes, and multidrug resistance efflux. Kita‐3 had no transposable elements, gene transfer agents, plasmid‐related functions, or intact prophages. Overall, this study produced the antibiotic resistance profile of L. plantarum subsp. plantarum Kita‐3 to assess the risk of transferring antibiotic resistance genes to other bacteria. The study provides essential data on the safe use of L. plantarum subsp. plantarum Kita‐3 as probiotics.


Keywords


Antibiotic resistance; Genome sequencing; In silico analysis; Lactiplantibacillus plantarum subsp. plantarum

Full Text:

PDF


References

Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran HK,Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, Faltyn M, Hernandez-Koutoucheva A, Sharma AN, Bordeleau E, Pawlowski AC, Zubyk HL, Dooley D, Griffiths E, Maguire F, Winsor GL, Beiko RG, Brinkman FS, Hsiao WW, Domselaar GV, McArthur AG. 2020. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48(D1):D517–D525. doi:10.1093/nar/gkz935.

Andriani D, Hasan PN, Utami T, Suroto DA, Wikandari R, Rahayu ES. 2021. Genotypic and Phenotypic Analyses of Antibiotic Resistance in Indonesian Indigenous Lactobacillus Probiotics. Appl. Food Biotechnol. 8(4):267–274. doi:10.22037/afb.v8i4.34448.

Anisimova EA, Yarullina DR. 2019. Antibiotic Resistance of Lactobacillus Strains. Curr. Microbiol. 76(12):1407–1416. doi:10.1007/s00284-019-01769- 7.

Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44(W1):W16–21. doi:10.1093/nar/gkw387.

Babakhani S, Oloomi M. 2018. Transposons: the agents of antibiotic resistance in bacteria. J. Basic Microbiol. 58(11):905 –917. doi:10.1002/jobm.201800204.

Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL. 2016. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms 4(1):14. doi:10.3390/microorganisms4010014.

Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, Ross RP, Hill C, O’Toole PW. 2019. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl. Environ. Microbiol. 85(1):e01738–18. doi:10.1128/AEM.01738-18.

Carattoli A. 2013. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 303(6-7):298–304. doi:10.1016/j.ijmm.2013.02.001.

Clinical and Laboratory Standards Institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that Grow aerobically. 9 th ed. Wayne, PA USA: Clinical and Laboratory Standards Institute.

Colavecchio A, Cadieux B, Lo A, Goodridge LD. 2017. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family - A review. Front. Microbiol. 8:1108. doi:10.3389/fmicb.2017.01108.

Commission E. 2002. Opinion of the Scientific Committee on Animal Nutrition on the criteria for assessing the safety of micro-organisms resistant to antibiotics of human clinical and veterinary importance. Brussels, Belgium: Scientific Opinions.

Dec M, Urban-Chmiel R, Stȩpień-Pyśniak D, Wernicki A. 2017. Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens. Gut Pathog. 9(1):54. doi:10.1186/s13099-017-0203-z.

EFSA-FEEDAP. 2018. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. (EFSA-FEEDAP, EFSA Panel on Additives and Products or Substances used in Animal Feed). EFSA J. 16(3):5206.

FAO/WHO. 2002. Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. Food and Agricultural Organization of the United Nations, Rome, Italy, and World Health Organization, Geneva, Switzerland.

Feng C, Zhang F, Wang B, Gao J, Wang Y, Shao Y. 2019. Evaluation of kanamycin and neomycin resistance in Lactobacillus plantarum using experimental evolution and whole-genome sequencing. Food Control 98:262–267. doi:10.1016/j.foodcont.2018.11.030.

Flórez AB, Egervärn M, Danielsen M, Tosi L, Morelli L, Lindgren S, Mayo B. 2006. Susceptibility of Lactobacillus plantarum strains to six antibiotics and definition of new susceptibility-resistance cutoff values. Microb. Drug Resist. 12(4):252–256. doi:10.1089/mdr.2006.12.252.

Florou-Paneri P, Christaki E, Bonos E. 2013. Lactic Acid Bacteria as Source of Functional Ingredients. Rijeka: IntechOpen. doi:10.5772/47766.

Gibson MK, Forsberg KJ, Dantas G. 2015. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 9(1):207–216. doi:10.1038/ismej.2014.106.

Gueimonde M, Sánchez B, de los Reyes-Gavilán CG, Margolles A. 2013. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 4(JUL):202. doi:10.3389/fmicb.2013.00202.

Guo H, Pan L, Li L, Lu J, Kwok L, Menghe B, Zhang H, Zhang W. 2017. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. J. Food Sci. 82(3):724–730. doi:10.1111/1750-3841.13645.

Hernando-Amado S, Coque TM, Baquero F, Martínez JL. 2019. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4(9):1432–1442. doi:10.1038/s41564- 019-0503-9.

Hooper DC, Jacoby GA. 2016. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb. Perspect. Med. 6(9):a025320. doi:10.1101/cshperspect.a025320.

International Organization for Standardization. 2010. ISO 10932:2010 - Milk and milk products - Determination of the minimal inhibitory concentration (MIC) of antibiotics applicable to bifidobacteria and non-enterococcal lactic acid bacteria (LAB). ISO 10932/IDF 233 Stand. 2010(Cmi):1e31.

Kapoor G, Saigal S, Elongavan A. 2017. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol., Clin. Pharmacol. 33(3):300– 305. doi:10.4103/joacp.JOACP_349_15.

Kirtzalidou E, Pramateftaki P, Kotsou M, Kyriacou A. 2011. Screening for lactobacilli with probiotic properties in the infant gut microbiota. Anaerobe 17(6):440–443. doi:10.1016/j.anaerobe.2011.05.007.

Kumar S, Lekshmi M, Parvathi A, Ojha M, Wenzel N, Varela MF. 2020. Functional and structural roles of the major facilitator superfamily bacterial multidrug efflux pumps. Microorganisms 8(2):266. doi:10.3390/microorganisms8020266.

Lawalata H, Sembiring L, Rahayu E. 2011. Molecular Identifcation of Lactic Acid Bacteria Producing Antimicrobial Agents from Bakasang, An Indonesian Traditional Fermented Fish Product. Indones. J. Biotechnol. 16(2):93–99. doi:10.22146/ijbiotech.16368.

Leclercq R. 2022. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin. Infect. Dis. 34(4):482–492. doi:10.1086/324626.

Li S, Li Z, Wei W, Ma C, Song X, Li S, He W, Tian J, Huo X. 2015. Association of mutation patterns in ggyrA and parC genes with quinolone resistance levels in lactic acid bacteria. J. Antibiot. (Tokyo). 68(2):81– 87. doi:10.1038/ja.2014.113.

Li W, Atkinson GC, Thakor NS, Allas U, Lu CC, Yan Chan K, Tenson T, Schulten K, Wilson KS, Hauryliuk V, Frank J. 2013. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun. 4:1477. doi:10.1038/ncomms2470.

Monahan JC. 2011. The FDA and generally recognized as safe (GRAS) substances. Hauppauge, NY: Nova Science Publishers. Nepal R, Houtak G, Wormald PJ, Psaltis AJ, Vreugde S. 2022. Prophage: a crucial catalyst in infectious disease modulation. The Lancet Microbe 3(3):e162– e163. doi:10.1016/S2666-5247(21)00354-2.

Ng EY, Trucksis M, Hooper DC. 1996. Quinolone resistance mutations in topoisomerase IV: Relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob. Agents Chemother. 40(8):1881–1888. doi:10.1128/aac.40.8.1881.

Nishino K, Nikaido E, Yamaguchi A. 2009. Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella. Biochim. Biophys. Acta - Proteins Proteomics 1794(5):834–843. doi:10.1016/j.bbapap.2009.02.002.

Ogbolu DO, Daini OA, Ogunledun A, Terry Alli AO, Olusoga-Ogbolu FF, Webber MA. 2012. Effects of gyrA and parC mutations in quinolones resistant clinical Gram-negative bacteria from Nigeria. African J. Biomed. Res. 15(2):97e104.

Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42(D1):D206–D214. doi:10.1093/nar/gkt1226.

Pearson WR. 2013. An introduction to sequence similarity (”homology”) searching. Curr. Protoc. Bioinforma. 42(1):3.1.1–3.1.8. doi:10.1002/0471250953.bi0301s42.

Ratna DK, Evita MM, Rahayu ES, Cahyanto MN, Wikandari R, Utami T. 2021. Indigenous lactic acid bacteria from Halloumi cheese as a probiotics candidate of Indonesian origin. Int. J. Probiotics Prebiotics 16(1):39– 44. doi:10.37290/ijpp2641-7197.16:39-44.

Redgrave LS, Sutton SB, Webber MA, Piddock LJ. 2014. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 22(8):438–445. doi:10.1016/j.tim.2014.04.007.

Rojo-Bezares B, Sáenz Y, Poeta P, Zarazaga M, RuizLarrea F, Torres C. 2006. Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int. J. Food Microbiol. 111(3):234– 40. doi:10.1016/j.ijfoodmicro.2006.06.007.

Rozman V, Mohar Lorbeg P, Accetto T, Bogovič Matijašić B. 2020. Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int. J. Food Microbiol. 314:108388. doi:10.1016/j.ijfoodmicro.2019.108388.

Schedlbauer A, Kaminishi T, Ochoa-Lizarralde B, Dhimole N, Zhou S, López-Alonso JP, Connell SR, Fucini P. 2015. Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome. Antimicrob. Agents Chemother. 59(5):2849–2854. doi:10.1128/AAC.04895-14.

Shao Y, Zhang W, Guo H, Pan L, Zhang H, Sun T. 2015. Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control 50:250–258. doi:10.1016/j.foodcont.2014.09.003.

Stefańska I, Kwiecień E, Jóźwiak-Piasecka K, Garbowska M, Binek M, Rzewuska M. 2021. Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. Front. Vet. Sci. 8:687071. doi:10.3389/fvets.2021.687071.

Sukmarini L, Mustopa AZ, Normawati M, Muzdalifah I. 2014. Identification of Antibiotic-Resistance Genes from Lactic Acid Bacteria in Indonesian Fermented Foods. HAYATI J. Biosci. 21(3):144–150. doi:10.4308/hjb.21.3.144.

Suroto DA, Hasan PN, Rahayu ES. 2021. Genomic insight of two indigenous probiotics Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7 from different origins of Indonesian fermented foods. Biodiversitas 22(12):5491–5500. doi:10.13057/biodiv/d221233.

Van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ. 2011. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2(SEP):203. doi:10.3389/fmicb.2011.00203.

Wendling CC, Refardt D, Hall AR. 2021. Fitness benefits to bacteria of carrying prophages and prophageencoded antibiotic-resistance genes peak in different environments. Evolution (N. Y). 75(2):515–528. doi:10.1111/evo.14153.



DOI: https://doi.org/10.22146/ijbiotech.72550

Article Metrics

Abstract views : 1158 | views : 869

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.