Increased activity of sugarcane sucrose‐phosphate synthase in transgenic tomato in response to N‐terminal truncation

Siti Nurul Afidah(1), Inyana Dwi Agustien(2), Parawita Dewanti(3), Bambang Sugiharto(4*)

(1) Biotechnology Master Study Program, University of Jember, Jember 68121, Indonesia; Center for Development of Advanced Sciences and Technology (CDAST), University of Jember, Jember 68121, Indonesia
(2) Center for Development of Advanced Sciences and Technology (CDAST), University of Jember, Jember 68121, Indonesia
(3) Faculty of Agriculture, University of Jember, Jl. Kalimantan No. 37, Jember 68121, Indonesia
(4) Biotechnology Master Study Program, University of Jember, Jember 68121, Indonesia; Center for Development of Advanced Sciences and Technology (CDAST), University of Jember, Jember 68121, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, University of Jember, Jember 68121, Indonesia
(*) Corresponding Author


Sucrose‐phosphate synthase (SPS) is a key enzyme catalyzing the formation of sucrose‐6‐phosphate through the transfer of uridine‐diphosphate glucose (UDP‐G) as a donor to fructose‐6‐phosphate (F6P) as an acceptor. Plant SPS consists of three main domains: N‐terminal, glycosyltransferase, and C‐terminal domains. Among these, the N‐terminal domain is involved in regulating the allosteric activator glucose‐6‐phosphate (G6P). This study was directed toward determining the regulation and characterization of N‐terminal truncated SPS in transgenic tomato. In this study, the N‐terminal truncated mutant of sugarcane SPS (ΔN‐SoSPS1) and full‐length sugarcane SPS (FL‐SoSPS1) were expressed into tomato plants to verify the functional role and importance of the N‐terminal domain in plant SPS. Overexpression of ΔN‐SoSPS1 led to an up to 3‐fold increase in the specific activity of SPS compared to non‐transformant plants (WT), while the specific activity of ΔN‐SoSPS1 was higher than FL‐SoSPS1 in transgenic tomato plants. Unlike WT and FL‐SoSPS1, the ΔN‐SoSPS1 mutant was not allosterically regulated by G6P. These results indicated that deletion of the N‐terminal domain promotes the loss of allosteric activation by G6P and increases binding affinity between enzyme and substrate.


sucrose‐phosphate synthase; glucose‐6‐phosphate; sucrose synthesis; allosteric regulation; N‐terminal domain

Full Text:



Aluko OO, Li C, Wang Q, Liu H. 2021. Sucrose Utilization for Improved Crop Yields : A Review Article. Int. J. Mol. Sci. 22:1–29. doi:10.3390/ijms22094704.

Anur RM, Mufithah N, Sawitri WD, Sakakibara H. 2020. Overexpression of Sucrose Phosphate Synthase Enhanced Sucrose Content and Biomass Production in Transgenic Sugarcane. Plants 9(200):1–11. URL doi:10.3390/plants9020200.

Apriasti R, Widyaningrum S, Hidayati WN, Sawitri WD, Darsono N. 2018. Full sequence of the coat protein gene is required for the induction of pathogen-derived resistance against sugarcane mosaic virus in transgenic sugarcane. Mol. Biol. Rep. 45(6):2749–2758. doi:10.1007/s11033-018-4326-1.

Barker L. 2000. SUT2, a putative sucrose sensor in sieve elements. the Plant Cell 12(7):1153–1164. doi:10.1105/tpc.12.7.1153.

Castleden CK, Aoki N, Gillespie VJ, MacRae EA, Quick WP, Buchner P, Foyer CH, Furbank RT, Lunn JE. 2004. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol. 135(3):1753–1764. doi:10.1104/pp.104.042457.

Cumino A, Curatti L, Giarrocco L, Salerno GL. 2002. Sucrose metabolism: Anabaena sucrose-phosphate synthase and sucrose-phosphate phosphatase define minimal functional domains shuffled during evolution. FEBS Letters 517(1-3):19–23. doi:10.1016/S0014- 5793(02)02516-4.

Doehlert DC, Huber SC. 1983. Regulation of Spinach Leaf Sucrose Phosphate Synthase by Glucose-6-Phosphate , Inorganic Phosphate , and pH1. Plant Physiol. 73:989–994. doi:10.1104/pp.73.4.989.

Falter C, Voigt CA. 2016. Improving biomass production and saccharification in Brachypodium distachyon through overexpression of a sucrose-phosphate synthase from sugarcane. J. Plant Biochem. Biotechnol. 25(3):311–318. doi:10.1007/s13562-015-0343-5.

Ferreon ACM, Ferreon JC, Wright PE, Deniz AA. 2013. Modulation of allostery by protein intrinsic disorder. Nature 498(7454):390–394. doi:10.1038/nature12294.

Hilser VJ, Thompson EB. 2007. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl. Acad. Sci. U. S. A. 104(20):8311–8315. doi:10.1073/pnas.0700329104.

Huber SC, Huber JL. 1991. Regulation of maize leaf sucrose-phosphate synthase by protein phosphorylation. Plant Cell Physiol. 32(3):319–326. doi:10.1093/oxfordjournals.pcp.a078083.

Huber SC, Huber JL. 1996. Role and Regulation of Sucrose-Phosphate Synthase in Higher Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47(1):431–444. doi:10.1146/annurev.arplant.47.1.431.

Huber SC, Huber JL, Mcmichael RW. 1994. Control of Plant Enzyme Activity by Reversible Protein Phosphorylation. Int. Rev. Cytol. 149:47–97. doi:10.1016/S0074-7696(08)62086-0.

Ishimaru K, Hirotsu N, Kashiwagi T, Madoka Y, Nagasuga K, Ono K, Ohsugi R. 2008. Overexpression of a maize SPS gene improves yield characters of potato under field conditions. Plant Prod. Sci. 11(1):104– 107. doi:10.1626/pps.11.104.

Kurniah NI, Sawitri WD, Rohman MS, Nugraha Y, Hase T, Sugiharto B. 2021. Mutation of UDPglucose binding motif residues lead to increased affinity for ADP-glucose in sugarcane sucrose phosphate synthase. Mol. Biol. Rep. 48(2):1697–1706. doi:10.1007/s11033-021-06181-8.

Lunn JE, Gillespie VJ, Furbank RT. 2003. Expression of a cyanobacterial sucrose-phosphate synthase from Synechocystis sp. PCC 6803 in transgenic plants. J. Exp. Bot. 54(381):223–237. doi:10.1093/jxb/erg023.

Lunn JE, Price GD, Furbank RT. 1999. Cloning and expression of a prokaryotic sucrose-phosphate synthase gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 40(2):297–305. doi:10.1023/A:1006130802706.

Nguyen-Quoc B, N’Tchobo H, Foyer CH, Yelle S. 1999. Overexpression of sucrose phosphate synthase increases sucrose unloading in transformed tomato fruit. J. Exp. Bot. 50(335):785–791. doi:10.1093/jxb/50.335.785.

Osorio S, Ruan YL, Fernie AR. 2014. An update on source-to-sink carbon partitioning in tomato. Front. Plant Sci. 5:1–11. doi:10.3389/fpls.2014.00516.

Park JY, Canam T, Kang KY, Ellis DD, Mansfield SD. 2008. Over-expression of an arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development. Transgenic Res. 17(2):181–192. doi:10.1007/s11248-007-9090-2.

Salerno GL, Curatti L. 2003. Origin of sucrose metabolism in higher plants: When, how and why? Trends Plant Sci. 8(2):63–69. doi:10.1016/S1360-1385(02)00029- 8.

Sawitri WD, Afidah SN, Nakagawa A, Hase T, Sugiharto B. 2017. Identification of UDP-glucose binding site in glycosyltransferase domain of sucrose phosphate synthase from sugarcane ( Saccharum officinarum ) by structure-based site-directed mutagenesis. Biophys. Rev. 10(2):293–298. doi:10.1007/s12551-017-0360- 9.

Sawitri WD, Narita H, Ishizaka-Ikeda E, Sugiharto B, Hase T, Nakagawa A. 2016. Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed in E. Coli and insect Sf9 cells: An importance of the N- Terminal domain for an allosteric regulatory property. J. Biochem. 159(6):599–607. doi:10.1093/jb/mvw004.

Seger M, Gebril S, Tabilona J, Peel A, Sengupta-Gopalan C. 2015. Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco. Planta 241(1):69–81. doi:10.1007/s00425-014-2165-4.

Sonnewald U, Quick WP, MacRae E, Krause KP, Stitt M. 1993. Purification, cloning and expression of spinach leaf sucrose-phosphate synthase in Escherichia coli. Planta 189(2):174–181. doi:10.1007/BF00195074.

Teck KC, Bujnicki JM, Tan TC, Huynh F, Patel BK, Sivaraman J. 2008. The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode. Plant Cell 20(4):1059–1072. doi:10.1105/tpc.107.051193.

Toroser D, McMichael R, Krause KP, Kurreck J, Sonnewald U, Stitt M, Huber SC. 1999. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation. Plant Journal 17(4):407–413. doi:10.1046/j.1365- 313X.1999.00389.x.

Worrell AC, Bruneau Jm, Summerfelt K, Boersig M, Toni A. 1991. Expression of a Maize Sucrose Phosphate Synthase in Tomato Alters Leaf Carbohydrate Partitioning. The Plant Cell 3(10):1121–1130. doi:10.1007/s11033-009-9510-x.


Article Metrics

Abstract views : 887 | views : 940


  • There are currently no refbacks.

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.