Establishment of transgenic potato cultivar IPB CP1 plants containing gene encoding for superoxide dismutase to increase the abiotic stress tolerance

https://doi.org/10.22146/ijbiotech.68040

Musawira Musawira(1), Suharsono Suharsono(2*), Miftahudin Miftahudin(3), Aris Tjahjoleksono(4)

(1) Graduate School of Plant Biology, IPB University, Bogor 16680, Indonesia; Center for Biotechnology, IPB University, Bogor 16680, Indonesia
(2) Graduate School of Plant Biology, IPB University, Bogor 16680, Indonesia; Center for Biotechnology, IPB University, Bogor 16680, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
(3) Graduate School of Plant Biology, IPB University, Bogor 16680, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
(4) Graduate School of Plant Biology, IPB University, Bogor 16680, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
(*) Corresponding Author

Abstract


Potato ( Solanum tuberosum L.) cultivar IPB CP1 is suitable as a raw material for the potato chip industry. Potato plants are sensitive to various abiotic stresses such as drought, aluminium and salinity, which induce reactive oxygen species (ROS). ROS is very toxic to plant cells. Superoxide dismutase (SOD) is one of the enzymes that catalyse ROS to H2O2 and O2. This study aimed to establish transgenic potato cv. IPB CP1 plants containing the MmCuZn‐SOD gene that are tolerant to various abiotic stresses. Genetic transformation using internodes without buds as explants produced putative transgenic potato with a transformation efficiency of 51.25% and a regeneration efficiency of 38.87%. Integration analysis of the MmCuZn‐SOD transgene in putative transgenic plants by polymerase chain reaction (PCR) with a set of specific primers showed that eight plants contained the MmCuZn‐SOD gene under the control of the 35S CaMV promoter. In vitro salinity stress, aluminium stress, and drought stress assays showed that transgenic plants had a higher number of roots and total root length than non‐transgenic ones. These results indicate that transgenic potato cv. IPB CP1 plants are more tolerant to abiotic stresses than non‐transgenic ones.


Keywords


abiotic stress tolerance, MmCu/Zn-SOD gene, potato cv. IPB CP1, transgenic

Full Text:

PDF


References

Bowler C, Montagu MV, D I. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43(1):83–116. doi:10.1146/annurev.pp.43.060192.000503.

Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC. 2005. Approaches to minimize variation of transgene expression in plants. Mol. Breed. 16(1):79–91. doi:10.1007/s11032­005­4929­9.

Cartes P, McManus M, Wulff­Zottele C, Leung S, Gutiérrez­Moraga A, Mora MdlL. 2012. Differential superoxide dismutase expression in ryegrass cultivars in response to short term aluminium stress. Plant Soil 350:353–363. doi:10.1007/s11104­011­0919­3.

Cervera M, Pina JA, Ju J, Navarro L, L P. 1998. Agrobac­terium­ mediated transformation of citrange : Factors affecting transformation and regeneration. Plant Cell Rep. 18:271–278. doi:10.1007/s002990050570.

Damayanti F, Suharsono, Tjahjoleksono A, Mariska I. 2017. Agrobacterium tumefaciens­ mediated transformation of MmCu/Zn­SOD gene to sugarcane (Saccharum officinarum cv PS 864) for acidic soil stress tolerance. Int. J. Agric. Biol. 19:1489–1496. doi:10.17957/IJAB/15.0448.

Du B, Nian H, Zhang Z, Yang C. 2010. Effects of aluminum on superoxide dismutase and peroxi­dase activities, and lipid peroxidation in the roots and calluses of soybeans differing in aluminum tolerance. Acta Physiol. Plant 32(5):883–890. doi:10.1007/s11738­010­0476­z.

FAOSTAT. 2021. Production of crops. URL http://www.fao.org/faostat/en/#data/QC.

Gea N, Suharsono, Wattimena GA, Widyastuti U. 2017. Introduction of Hd3a gene in IPB CP1 potato cultivar through Agrobacterium tumefaciens­mediated. Pak. J. Biotechnol. 14(2):129–134. URL https://pjbt.org/index.php/pjbt/article/download/295/290.

Gelvin SB. 2017. Integration of Agrobacterium T­DNA into the plant genome. Annu. Rev. Genet. 51:195-217. doi:10.1146/annurev­genet­120215­035320.

Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N. 2015. Super­ oxide dismutase­mentor of abiotic stress tolerance in crop plants. Environ. Sci. Pollut. Res. 22(14):10375–10394. doi:10.1007/s11356­015­4532­5.

Gill T, Sreenivasulu Y, Kumar S, Singh AP. 2010. Over­expression of superoxide dismutase exhibits lignification of vascular structures in Arabidop­sis thaliana. J. Plant Physiol. 167(9):757–760. doi:10.1016/j.jplph.2009.12.004.

Haddadi F, Aziz MA, Kamaladini H, Ravanfar SA. 2013. Thidiazuron­ and zeatin­induced high­ frequency shoot regeneration from leafand shoot­tip explants of strawberry. Horttechnology 23(3):276– 387. doi:10.21273/horttech.23.3.276.

Hannum S. 2012. Isolation, cloning, and expression anal­ysis of gene coding copper/zinc superoxide dismu­tase (CuZn­SOD) from Melastoma malabathricum L. [Dissertation]. Bogor: Bogor Agricultural University.

Houmani H, Rodríguez­Ruiz M, Palma JM, Abdelly C, Corpas FJ. 2016. Modulation of superoxide dismu­tase (SOD) isozymes by organ development and high long­term salinity in the halophyte Cakile maritima. Protoplasma 253(3):885–894. doi:10.1007/s00709­015­0850­1. Jajic I, Sarna T, Strzalka K. 2015. Senescence, stress, and reactive oxygen species. Plants 4:393–141. doi:10.3390/plants4030393.

Jing X, Hou P, Lu Y, Deng S, Li N, Zhao R, Sun J, Wang Y, Han Y, Lang T, Ding M, Shen X, Chen S. 2015. Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxy­ gen species in chloroplast. Front Plant Sci. 6:1–13. doi:10.3389/fpls.2015.00023.

Kumar R, Mamrutha HM, Kaur A, Grewal A. 2017. Synergistic effect of cefotaxime and timentin to suppress the Agrobacterium over growth in wheat (Triticum aestivum L.) transformation. Asian J. Microbiol. Biotechnol. Environ. Sci. 19(4):961–967. URL http://www.envirobiotechjournals.com/article_abstract.php?aid=8347&iid=241&jid=1.

Lin J, Redies C. 2012. Histological evidence: House­ keeping genes beta­actin and GAPDH are of limited value for normalization of gene expression. Dev. Genes Evol. 222(6):369–376. doi:10.1007/s00427­012­0420­x.

Lu F, Liang X, Lu H, Li Q, Chen Q, Zhang P, Li K, Liu G, Yan W, Song J, Duan C, Zhang L. 2017. Overproduction of superoxide dismutase and catalase confers cassava resistance to Tetranychus cinnabarinus. Sci. Rep. 7:1–13. doi:10.1038/srep40179.

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plants 15:473–497. doi:10.1111/j.1399­3054.1962.tb08052.x.

Pal A, Acharya K, Vats SK, Kumar S, Ahuja PS. 2013. Over­expression of PaSOD in transgenic potato enhances photosynthetic performance under drought. Biol. Plant. 57(2):359–364. doi:10.1007/s10535­012­0277-­x.

Pasmawati, Tjahjoleksono A, Suharsono. 2021. Obtaining of transgenic potato (Solanum tuberosum L.) cultivar IPB CP3 containing LYZC gene resistant to bacte­rial wilt disease. Indones. J. Biotechnol. 26(1):48–53. doi:10.22146/IJBIOTECH.61682.

Rai GK, Rai NP, Kumar S, Yadav A, Rathaur S, Singh M. 2012. Effects of explant age, ger­mination medium, pre­culture parameters, inocula­tion medium, pH, washing medium, and selection regime on Agrobacterium­ mediated transformation of tomato. Vitr. Cell Dev. Biol. ­ Plant 48(5):565–578. doi:10.1007/s11627­012­9442­3.

Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reac­tive oxygen species, oxidative damage, and antioxida­tive defense mechanism in plants under stressful con­ditions. J. Bot. 2012:1–26. doi:10.1155/2012/217037.

Suharsono. 2002. Construction of genomic library of soy­bean cultivar slamet. Hayati 9(3):67.

Tertivanidis K, Goudoula C, Vasilikiotis C, Hassiotou 452 E, Perl­Treves R, Tsaftaris A. 2004. Superox­ide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola. Transgenic Res. 13(3):225–233. doi:10.1023/B:TRAG.0000034610.35724.04.

Visser RGF, Jacobsen E, Hesseling­Meinders A, Schans MJ, Witholt B, Feenstra WJ. 1989. Transformation of homozygous diploid potato with an Agrobacterium tumefaciens binary vector system by adventitious shoot regeneration on leaf and stem segments. Plant Mol. Biol. 12(3):329–337. doi:10.1007/BF00043210.

Wang F, Wang Q, Kwon S, Kwak S, Su W. 2005. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superox­ide dismutase. J. Plant Physiol. 162:465–472. doi:10.1016/j.jplph.2004.09.009.

Wang W, Xia MX, Chen J, Yuan R, Deng FN, Shen FF. 2016. Gene expression characteristics and reg­ulation mechanisms of superoxide dismutase and its physiological roles in plants under stress. Biochem. 81(5):465–480. doi:10.1134/S0006297916050047.

Xu J, Yang J, Duan X, Jiang Y, Zhang P. 2014. Increased expression of native cytosolic Cu/Zn superoxide dis­mutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol. 14(208):1–13. doi:10.1186/s12870­014­0208­4.

Yan H, Li Q, Park SC, Wang X, Liu YJ, Zhang YG, Tang W, Kou M, Ma DF. 2016. Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiol. Biochem. 109:20–27. doi:10.1016/j.plaphy.2016.09.003.

Yang ZB, Eticha D, Albacete A, Rao IM, Roitsch T, Horst WJ. 2012. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris). J. Exp. Bot. 63(8):3109–3125. doi:10.1093/jxb/ers038.

Zhang H, Xu F, Wu Y, Hu HH, Dai XF. 2017. Progress of potato staple food research and industry develop­ment in China. J. Integr. Agric. 16(12):2924–2932. doi:10.1016/S2095­3119(17)61736­2.



DOI: https://doi.org/10.22146/ijbiotech.68040

Article Metrics

Abstract views : 1789 | views : 2294

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.