Obtaining of transgenic potato (Solanum tuberosum L.) cultivar IPB CP3 containing LYZ‐C gene resistant to bacterial wilt disease


Pasmawati Pasmawati(1), Aris Tjahjoleksono(2), Suharsono Suharsono(3*)

(1) Graduate School of Biotechnology, IPB University, Bogor 16680; Research Center for Bioresources and Biotechnology, IPB University, Bogor 16680
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680
(3) Graduate School of Biotechnology, IPB University, Bogor 16680; Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680; Research Center for Bioresources and Biotechnology, IPB University, Bogor 16680
(*) Corresponding Author


Bacterial wilt caused by Ralstonia solanacearum is one of the most important bacterial diseases in potato production. This study aimed to obtain the transgenic potato (Solanum tuberosum L.) cultivar IPB CP3, containing LYZ‐C gene encoding for lysozyme type C, resistant to bacterial disease caused by R. solanacearum. Genetic transformation using Agrobacterium tumefaciens LBA4404 to 124 internode explants resulted in the transformation efficiency of about 47.58% with a regeneration efficiency of approximately 30.51%. Gene integration analysis showed that 16 clones were confirmed as transgenic clones containing the LYZ‐C gene. Analysis of resistance to R. solanacearum of three transgenic clones showed that all three transgenic clones were more resistant than a non‐transgenic one. This result showed that the LYZ‐C gene integrated in the genome of transgenic potato increased the resistance of potato plants to R. solanacearum. We obtained two transgenic clones considered resistant to bacterial wilt disease.


Bacterial wilt; genetic transformation; lysozyme; potato; transgenic

Full Text:



Alfian A, Suharsono, Tjahjoleksono A. 2020. Expression of c­lysozyme gene in transgenic potatoes cv. jala ipam against bacterial wilt disease Caused by Ralstonia solanacearum. Int J Agric Biol. 23(6):1136–1140. doi:10.17957/IJAB/15.1397.

Butaye KM, Cammue BP, Delauré SL, De Bolle MF. 2005. Approaches to minimize variation of transgene expression in plants. Mol Breed. 16(1):79–91. doi:10.1007/s11032­005­4929­9.

Charkowski A, Sharma K, Parker ML, Secor GA, Elphinstone J. 2019. Bacterial diseases of potato. In: H Campos, O Ortiz, editors, The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind. p. 351–388. doi:10.1007/978­3­030­28683­5_10.

Davidson RD, Xie KY. 2014. Seed potato production. In: The potato: botany, production and uses. p. 115–132. doi:10.1079/9781780642802.0115.

Dong S, Shew HD, Tredway LP, Lu J, Sivamani E, Miller ES, Qu R. 2008. Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases. Transgenic Res. 17(1):47–57. doi:10.1007/s11248­007­9073­3.

FAOSTAT. 2020. Trade of crops and livestock products. URL http://faostat.fao.org/site/567/DesktopDe fault.aspx?PageID=567­ancor.

Farhanah A, Suharsono, Wattimena GA, Widyastuti U. 2017. Genetic engineering of potato plant (Solanum tuberosum L.) cv. Jala Ipam with MmPMA gene encoding plasma membrane H+­ATPASE. Pakistan J Biotechnol. 14(1):37–42. 

Fock I, Collonnier C, Purwito A, Luisetti J, Souvannavong V, Vedel F, Servaes A, Ambroise A, Kodja H, Ducreux G, Sihachakr D. 2000. Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Sci. 160(1):165–176. doi:10.1016/S0168­9452(00)00375­7.

Gea N, Gea S, Wattimena GA, Widyastuti U. 2017. Introduction of Hd3a gene in IPB CP1 potato cultivar through Agrobacterium tumefaciens ­mediated transformation under the control of use 35S CaMV promoter. Pak J Biotechnol. 14(2):129–134.

Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW. 2012. Plant disease resistance genes: Current status and future directions. Physiol Mol Plant Pathol. 78:51–65. doi:10.1016/j.pmpp.2012.01.002.

Habe I. 2018. An In Vitro Assay Method for Resistance to Bacterial Wilt (Ralstonia solanacearum) in Potato. Am J Potato Res. 95(3):311–316. doi:10.1007/s12230­018­9643­3.

Hwang HH, Yu M, Lai EM. 2017. Agrobacterium ­ Mediated Plant Transformation: Biology and Applications. The Arabidopsis Book. 15:e0186. doi:10.1199/tab.0186.

Ko DK, Nadakuduti SS, Douches DS, Buell CR. 2018. Transcriptome profiling of transgenic potato plants provides insights into variability caused by plant transformation. PLoS ONE. 13(11). doi:10.1371/journal.pone.0206055.

Kohli A, González­Melendi P, Abranches R, Capell T, Stoger E, Christou P. 2006. The quest to understand the basis and mechanisms that control expression of introduced transgenes in crop plants. Plant Signaling Behav. 1(4):185–195. doi:10.4161/psb.1.4.3195.

Leng P, Su S, Wei F, Yu F, Duan Y. 2009. Correlation between browning, total phenolic content, polyphenol oxidase and several antioxidation enzymes during pistachio tissue culture. Acta Hortic. 829:127–131. doi:10.17660/Acta Hortic.2009.829.17.

Lowe­Power TM, Khokhani D, Allen C. 2018. How Ralstonia solanacearum Exploits and Thrives in the Flowing Plant Xylem Environment. Trends 26(11):929–942. doi:10.1016/j.tim.2018.06.002.

Masekesa TR, Gasura E, Ngadze E, Icishahayo D, Kujeke GT, Chidzwondo F, Robertson I. 2016. Efficacy of Zeatin, Kinetin and Thidiazuron in induction of adventitious root and shoot from petiole explants of sweetpotato cv. Brondal. S Afr J Bot. 104:1–5. doi:10.1016/j.sajb.2015.11.001.

McHughen A, Jordan M, Feist G. 1989. A Preculture Period Prior to Agrobacterium Inoculation Increases Production of Transgenic Plants. J Plant Physiol. 135(2):245–248. doi:10.1016/S0176­ 1617(89)80187­7.

Murashige T, Skoog F. 1962. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 15(3):473–497. doi:10.1111/j.1399­3054.1962.tb08052.x.

Nakano Y. 2017. Effect of acetosyringone on Agrobacterium­mediated transformation of Eustoma grandiflorum leaf disks. JARQ. 51(4):351–355. doi:10.6090/jarq.51.351.

Park SH, Morris JL, Park JE, Hirschi KD, Smith RH. 2003. Efficient and genotype­independent Agrobacterium ­ Mediated tomato transformation. J Plant Physiol. 160(10):1253–1257. doi:10.1078/0176­1617­01103.

Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan­Norreel B. 1992. Characterization of competent cells and early events of Agrobacterium ­mediated genetic transformation in Arabidopsis thaliana. Planta 188(3):439–456. doi:10.1007/BF00192812.

Senjaya SK. 2017. Genetic engineering of potato plant cultivar Jala Ipam with c­lysozyme gene. Master thesis, Institut Pertanian Bogor, Bogor.

Serrano C, Arce­Johnson P, Torres H, Gebauer M, Gutierrez M, Moreno M, Jordana X, Venegas A, Kalazich J, Holuigue L. 2000. Expression of the chicken lysozyme gene in potato enhances resistance to infection by Erwinia carotovora subsp. atroseptica. Am J Potato Res. 77(3):191–199. doi:10.1007/BF02853944.

Suharsono. 2002. Construction of genomic library of soybean cultivar Slamet. Hayati. 9(3):67–70.

Thaveechai N, Hartman G, Kosittratana W. 1989. Bacterial Wilt Resistance Screening. Laboratory Course on Bacterial Wilt of Tomato. Kasetsart University, Thailand .

Yon­Kahn J. 1996. Lysozymes, model enzymes in biochemistry and biology edited by P Jollès, Birkhäuser, 1996, 449 p. Biochimie. 78(10):887. doi:10.1016/s0300­9084(97)84344­1.

Yong WTL, Abdullah JO, Mahmood M. 2006. Optimization of Agrobacterium­mediated transformation parameters for Melastomataceae spp. using green fluorescent protein (GFP) as a reporter. Sci Hortic. 109(1):78–85. doi:10.1016/j.scienta.2006.03.005.

DOI: https://doi.org/10.22146/ijbiotech.61682

Article Metrics

Abstract views : 632 | views : 702


  • There are currently no refbacks.

Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.