Characterization of recombinant Bacillus halodurans CM1 xylanase produced by Pichia pastoris KM71 and its potential application in bleaching process of bagasse pulp

https://doi.org/10.22146/ijbiotech.57701

Haniyya Haniyya(1), Lina Mulyawati(2), Is Helianti(3*), Phitsanu Pinmanee(4), Kanokarn Kocharin(5), Duriya Cantasingh(6), Thidarat Nimchua(7)

(1) Center for Bioindustrial Technology, Agency of Assessment and Application of Technology (BPPT), Building 611/614, LAPTIAB‐BPPT, PUSPIPTEK Area, Setu, South Tangerang 15314, Indonesia
(2) Center for Bioindustrial Technology, Agency of Assessment and Application of Technology (BPPT), Building 611/614, LAPTIAB‐BPPT, PUSPIPTEK Area, Setu, South Tangerang 15314
(3) Center for Bioindustrial Technology, Agency of Assessment and Application of Technology (BPPT), Building 611/614, LAPTIAB‐BPPT, PUSPIPTEK Area, Setu, South Tangerang 15314
(4) Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology,113 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120
(5) Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120
(6) Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology,113 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120
(7) Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology,113 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120
(*) Corresponding Author

Abstract


Thermoalkalophilic xylanases promise potential application in pulp biobleaching to reduce the use of toxic chlorinated chemical agents, which are harmful to the environment. In this study, a thermoalkalophilic endoxylanase gene (bhxyn3) originating from Indonesian indigenous Bacillus halodurans CM1 was cloned into yeast expression vector pPICZα A and expressed in Pichia pastoris KM71 under the control of AOX1 promoter. Recombinant P. pastoris expressed the highest final level of xylanase (146 U/mL) on BMGY medium after five days of cultivation. Optimization of xylanase production on a small scale was carried out by varying the methanol concentrations and the optimal xylanase production by the recombinant P. pastoris was observed in the culture with 2% (v/v) methanol after four days of the induction phase. The recombinant xylanase (BHxyn3E) was thermotolerant and alkalophilic, with an optimal temperature at around 55‐65 °C and under pH 8.0. The enzyme activity was slightly induced by K+, Fe2+, and MoO42‐. Enzymatic bleaching of bagasse pulp with no prior pH adjustment (pH 9) using BHxyn3E at 200 U/g oven dried pulp increased the lightness index (L*) and changed substantially the color a index (a*); however, the treatments did not change the whiteness index in a significant way. Therefore, further optimization and assessment such as adjustment of incubation temperature and pH in biobleaching were needed to reduce the use of harmful chemical agents in industrial applications.


Keywords


Bacillus halodurans; biobleaching; cellulase‐free xylanase; Pichia pastoris; thermoalkalophilic xylanase

Full Text:

PDF


References

Bailey MJ, Biely P, Poutanen K. 1992. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 23(3):257–270. doi:10.1016/0168­ 1656(92)90074­J.

Bhardwaj N, Kumar B, Verma P. 2019. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess. 6(1). doi:10.1186/s40643­019­0276­2.

Chae YK, Kim SH, Markley JL. 2017. Relationship between recombinant protein expression and host metabolome as determined by two-dimensional NMR spectroscopy. PLoS ONE. 12(5). doi:10.1371/journal.pone.0177233.

Chantasingh D, Pootanakit K, Champreda V, Kanokratana P, Eurwilaichitr L. 2006. Cloning, expression, and characterization of a xylanase 10 from Aspergillus terreus (BCC129) in Pichia pastoris. Protein Expression Purif. 46(1):143–149. doi:10.1016/j.pep.2005.09.013.

Cheng J, Yu Y, Zhu M. 2014. Enhanced biodegradation of sugarcane bagasse by Clostridium thermocellum with surfactant addition. Green Chem. 16(5):2689–2695. doi:10.1039/c3gc42494d.

de Amorim Araújo J, Ferreira TC, Rubini MR, Duran AGG, De Marco JL, de Moraes LMP, Torres FAG. 2015. Coexpression of cellulases in Pichia pastoris as a self­processing protein fusion. AMB Express. 5(1):1–10. doi:10.1186/s13568­015­0170­z.

Gomes A, Byregowda S, Veeregowda B, Balamurugan V. 2016. An overview of heterologous expression host systems for the production of recombinant proteins. Adv Anim Vet Sci. 4(4):346—­356. doi:10.14737/journal.aavs/2016/4.7.346.356.

Guerrero­Olazarán M, Rodríguez­Blanco L, CarreonTreviño JG, Gallegos­López JA, Viader­Salvadó JM. 2010. Expression of a bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme. Appl Environ Microbiol. 76(16):5601–5608. doi:10.1128/AEM.00762­10.

Helianti I, Ulfah M, Noer S, Nurhayati N, Saefudin E. 2018. Cloning and expression of alkalophilic xylanase gene from an Indonesia local Bacillus halodurans CM1 in Escherichia coli and its application on deinking process of waste paper. Malays J Microbiol. 14(7):655–662. doi:10.21161/mjm.114217.

Hidayat H, Yasuyuki K. 2012. Emerging Pulp and Paper Industry in Thailand. Jurnal Kajian Wilayah. 3(1):117–137. doi:10.14203/jkw.v3i1.315.

Jeya M, Thiagarajan S, Lee JK, Gunasekaran P. 2009. Cloning and expression of GH11 xylanase gene from Aspergillus fumigatus MKU1 in Pichia pastoris. J Biosci Bioeng. 108(1):24–29. doi:10.1016/j.jbiosc.2009.02.003.

Kumar S, Haq I, Prakash J, Singh SK, Mishra S, Raj A. 2017. Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre­bleaching of kraft pulp. 3 Biotech. 7(1). doi:10.1007/s13205­017­0615­ y.

Lin XQ, Han SY, Zhang N, Hu H, Zheng SP, Ye YR, Lin Y. 2013. Bleach boosting effect of xylanase A from Bacillus halodurans C­125 in ECF bleaching of wheat straw pulp. Enzyme Microb Technol. 52(2):91–98. doi:10.1016/j.enzmictec.2012.10.011.

Miller GL. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem. 31(3):426–428. doi:10.1021/ac60147a030.

Mohd Dali NS, Nuge T, Mahamad Maifiah MH, Yusof F, Meor Hussin AS, Farouk AE, Mohd Salleh, Hamzah. 2011. Molecular Cloning and Production of Recombinant Phytase from Bacillus subtilis ASUIA243 in Pichia pastoris. IIUM Eng J. 12(4):99– 108. doi:10.31436/iiumej.v12i4.211.

Nair SG, Sindhu R, Shashidhar S. 2010. Enzymatic bleaching of kraft pulp by xylanase from Aspergillus sydowii SBS 45. Indian J Microbiol. 50(3):332–338. doi:10.1007/s12088­010­0049­2.

Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L. 2012. Metagenomic analysis of novel lignocellulose­degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechnol. 22(4):462–469. doi:10.4014/jmb.1108.08037.

Sanghi A, Garg N, Gupta VK, Mittal A, Kuhad RC. 2010. One­step purification and characterization of cellulase­free xylanase produced by alkalophilic Bacillus subtilis ASH. Braz J Microbiol. 41(2):467– 476. doi:10.1590/S1517­83822010000200029.

Shang T, Si D, Zhang D, Liu X, Zhao L, Hu C, Fu Y, Zhang R. 2017. Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed­batch strategy in high cell­density fermentation. BMC Biotechnol. 17(1). doi:10.1186/s12896­017­ 0361­6.

Sudaryanto AY, Wibowo SH, Purnomo YY. 2008. The effect of chemical and biopulping process on bagasse pulp. Dev Chem Eng Miner Process. 13(5­6):639– 644. doi:10.1002/apj.5500130513.

Tišma M, Tadić T, Budžaki S, Ostojčić M, Šalić A, Zelić B, Tran NN, Ngothai Y, Hessel V. 2019. Lipase Production by Solid­State Cultivation of Thermomyces lanuginosus on By ­Products from ColdPressing Oil Production. Processes. 7(7):465. doi:10.3390/pr7070465.

Ulfah M, Helianti I, Wahyuntari B, Nurhayati N. 2011. Characterization of a New Thermoalkalophilic Xylanase­ Producing Bacterial Strain Isolated from Cimanggu Hot Spring, West Java, Indonesia. Microbiol Indones. 5(2):139–143. doi:10.5454/mi.5.3.7.

Vena PF, García­Aparicio MP, Brienzo M, Görgens JF, Rypstra T. 2013. Impact of hemicelluloses pre extraction on pulp properties of sugarcane bagasse. Cellulose Chem Technol. 47(5­6):469–477.

Vieira Gomes A, Souza Carmo T, Silva Carvalho L, Mendonça Bahia F, Parachin N. 2018. Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms 6(2):38. doi:10.3390/microorganisms6020038.

Walia A, Guleria S, Mehta P, Chauhan A, Parkash J. 2017. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. 7(1). doi:10.1007/s13205­016­0584­6.

Wang HY, Fan BQ, Li CH, Liu S, Li M. 2011. Effects of rhamnolipid on the cellulase and xylanase in hydrolysis of wheat straw. Bioresour Technol. 102(11):6515– 6521. doi:10.1016/j.biortech.2011.02.102.

Weerachavangkul C, Laothanachareon T, Boonyapakron K, Wongwilaiwalin S, Nimchua T, Eurwilaichitr L, Pootanakit K, Igarashi Y, Champreda V. 2012. Alkaliphilic endoxylanase from lignocellulolytic microbial consortium metagenome for biobleaching of eucalyptus pulp. J Microbiol Biotechnol. 22(12):1636– 1643. doi:10.4014/jmb.1206.06044.

Zhao L, Geng J, Guo Y, Liao X, Liu X, Wu R, Zheng Z, Zhang R. 2015. Expression of the Thermobifida fusca xylanase Xyn11A in Pichia pastoris and its characterization. BMC Biotechnol. 15(1). doi:10.1186/s12896­015­0135­y.

Zhu J, Liu H, Zhang J, Wang P, Liu S, Liu G, Wu L. 2014. Effects of Asn­33 glycosylation on the thermostability of Thermomyces lanuginosus lipase. J Appl Microbiol. 117(1):151–159. doi:10.1111/jam.12519.



DOI: https://doi.org/10.22146/ijbiotech.57701

Article Metrics

Abstract views : 380 | views : 645

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.