Optimization of solid‐state fermentation condition for crude protein enrichment of rice bran using Rhizopus oryzae in tray bioreactor

https://doi.org/10.22146/ijbiotech.57561

Andhika Cahaya Titisan Sukma(1*), Herawati Oktavianty(2), Siswo Sumardiono(3)

(1) Department of Chemical Engineering, Faculty of Engineering, University of Lampung, Jl. Prof. Sumantri Brojonegoro No 1, Bandar Lampung 35145
(2) Department of Agricultural Product Technology, Faculty of Agricultural Technology, INSTIPER, Jl. Petung Road No 2, Sleman, Yogyakarta 55281
(3) Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Sudarto No 13, Semarang 50275
(*) Corresponding Author

Abstract


Enhancement of crude protein content in rice bran with the solid‐state fermentation method in tray bioreactor using Rhizopus oryzae FNCC 6011 has been investigated. This research aimed to optimize the fermentation condition using the response surface methodology (RSM). The central composite design (CCD) with three independent variables, including substrate thickness (1 to 3 cm), fermentation temperature (28 to 32 °C), and nutrient concentration of KH2PO4 (2 to 6 g/L) used to determine the crude protein enrichment. The quadratic model has successfully described the effect of variable interactions on responses very well as indicated by the F value and p‐value are 11.20 and 0.0041, respectively. The multiple correlation coefficients (R2) of 0.9438 indicated that 94.38% of the model data has approached the actual data with a deviation of 5.62%. The interaction between the variable substrate thickness and the fermentation temperature is the most influential variable on the crude protein enrichment of rice bran, indicated by the highest F value of 24.08 and the lowest p‐value of 0.0027. The highest protein increase of 62.51% was obtained at 2 cm substrate thickness, fermentation temperature of 30 °C, and KH2PO4 concentration of 4 g/L.


Keywords


Rice bran; solid‐state fermentation; Rhizopus oryzae; response surface methodology

Full Text:

PDF


References

Aghbashlo M, Tabatabaei M, Karimi K, Mohammadi M. 2017. Effect of phosphate concentration on exergeticbased sustainability parameters of glucose fermentation by Ethanolic Mucor indicus. Sustain Prod Consum. 9:28–36. doi:10.1016/j.spc.2016.06.004.

Anggoro DD, Oktavianty H, Kurniawan BP, Daud R. 2019. Optimization of glycerol monolaurate (Gml) synthesis from glycerol and lauric acid using dealuminated zeolite Y catalyst. Jurnal Teknologi. 81(4):133– 141. doi:10.11113/jt.v81.13511.

Anupama, Ravindra P. 2001. Studies on production of single cell protein by Aspergillus niger in solid state fermentation of rice bran. Braz Arch Biol Technol. 44(1):79–88. doi:10.1590/S1516­ 89132001000100011.

Baş D, Boyaci IH. 2007. Modeling and optimization i: Usability of response surface methodology. J Food Eng. 78(3):836–845. doi:10.1016/j.jfoodeng.2005.11.024.

Bakir U, Yavascaoglu S, Guvenc F, Ersayin A. 2001. An endo­β­1,4­xylanase from Rhizopus oryzae: Production, partial purification and biochemical characterization. Enzyme Microb Technol. 29(6­7):328–334. doi:10.1016/S0141­0229(01)00379­9.

Chellapandi P, Jani HM. 2008. Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation. Braz J Microbiol. 39(1):122–127. doi:10.1590/S1517­ 83822008000100026.

Chen H. 2013. Modern solid state fermentation: Theory and practice. Dordrecht: Springer. doi:10.1007/978­ 94­007­6043­1_1.

Chui Yu R, Hang YD. 1990. Amylolytic enzyme production by Rhizopus oryzae grown on agricultural commodities. World Journal of Microbiology and Biotechnology 6(1):15–18. doi:10.1007/BF01225348.

da Cunha MC, Silva LC, Sato HH, de Castro RJS. 2018. Using response surface methodology to improve the L­asparaginase production by Aspergillus niger under solid­state fermentation. Biocatal Agric Biotechnol. 16:31–36. doi:10.1016/j.bcab.2018.07.018.

da Silveira CM, Badiale­Furlong E. 2009. Sperathe effects of solid­state fermentation in the functional properties of defatted rice bran and wheat bran. Braz Arch Biol Technol. Biol. Technol. 52(6):1555–1562. doi:10.1590/S1516­89132009000600027.

Das S, Ghosh U. 2014. Effect of nutritional supplementation of solid state fermentation medium on biosynthesis of phytase from Aspergillus niger NCIM 612. J Sci Ind Res. 73(9):593–597.

Deepthi S, Satheeshkumar K. 2017. Effects of major nutrients, growth regulators and inoculum size on enhanced growth and camptothecin production in adventitious root cultures of Ophiorrhiza mungos L. Biochem Eng J. 117:198–209. doi:10.1016/j.bej.2016.10.016.

Denardi­Souza T, Massarolo KC, Tralamazza SM, Badiale­Furlong E. 2018. Monitoreo de la biomasa micótica modificada por Rhizopus oryzae en relación con el perfil de aminoácidos y ácidos grasos esenciales de harina de soya (soja), trigo y arroz. CYTA­J Food. 16(1):156–164. doi:10.1080/19476337.2017.1359676.

Dutt D, Kumar A. 2014. Optimization of cellulase production under solid­state fermentation by Aspergillus flavus (AT­2) and Aspergillus niger (AT­3) and its impact on stickies and ink particle size of sorted office paper. Cellul Chem Technol. 48(3­4):285–298.

Ezeilo UR, Wahab RA, Mahat NA. 2020. Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renewable Energy 156:1301–1312. doi:10.1016/j.renene.2019.11.149.

Firatligil­ Durmus E, Evranuz O. 2010. Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). LWT–Food Sci Technol. 43(2):226–231. doi:10.1016/j.lwt.2009.08.017.

Haaland PD. 1989. Experimental Design in Biotechnology. CRC Press. doi:10.1201/9781003065968.

Hamdy HS. 2006. Purification and characterization of the pectin lyase secreted within the macerating fluid of Rhizopus oryzae (Went & Prinsen Geerligs) grown on orange peel. Indian J Biotechnol. 5(3):284–291.

Ibarruri J, Hernández I. 2018. Rhizopus oryzae as Fermentation Agent in Food Derived Subproducts. Waste Biomass Valorization 9(11):2107– 2115. doi:10.1007/s12649­017­0017­8.

Karmakar M, Ray R. 2011. Current Trends in Research and Application of Microbial Cellulases. Research Journal of Microbiology 6(1):41–53. doi:10.3923/jm.2011.41.53.

Lennartsson P, Taherzadeh M, Edebo L. 2014. Rhizopus. In: CA Batt, ML Tortorello, editors, Encyclopedia of Food Microbiology (Second Edition). Oxford: Academic Press, second edition edition. p. 284 – 290. doi:https://doi.org/10.1016/B978­0­12­384730­0.00391­8.

Marrubini G, Dugheri S, Cappelli G, Arcangeli G, Mucci N, Appelblad P, Melzi C, Speltini A. 2020. Experimental designs for solid­phase microextraction method development in bioanalysis: A review. Anal Chim Acta. 1119:77–100. doi:10.1016/j.aca.2020.04.012.

Martins S, Mussatto SI, Martínez­Avila G, MontañezSaenz J, Aguilar CN, Teixeira JA. 2011. Bioactive phenolic compounds: Production and extraction by solid­state fermentation. A review 29(3):365–373. doi:10.1016/j.biotechadv.2011.01.008.

Mitchell DA, Krieger N, Berovič M. 2006. Solid­state fermentation bioreactors. Heidelberg: Springer. doi:10.1007/3­540­31286­2. Mohammadi M, Zamani A, Karimi K. 2013. Effect of phosphate on glucosamine production by ethanolic fungus Mucor indicus. Appl Biochem Biotechnol. 171(6):1465–1472. doi:10.1007/s12010­013­0440­7.

Myers RH, Montgomery DC, Anderson­Cook C. 2002. Process and product optimization using designed experiments, volume 2. New York: John Wiley & Sons. Nasseri AT, Rasoul­Amini S, Morowvat MH, Ghasemi Y. 2011. Single cell protein: Production and process. Am J Food Technol. 6(2):103–116. doi:10.3923/ajft.2011.103.116.

Oliveira MdS, Feddern V, Kupski L, Cipolatti EP, Badiale­Furlong E, De Souza­Soares LA. 2010. Physico­chemical characterization of fermented rice bran biomass. CYTA­J Food. 8(3):229–236. doi:10.1080/19476330903450274.

Pandey A. 2003. Solid­state fermentation. Biochem Eng J. 13(2­3):81–84. doi:10.1016/S1369­703X(02)00121­ 3. Qi J, Li Y, Yokoyama W, Majeed H, Masamba KG, Zhong F, Ma J. 2015. Cellulosic fraction of rice bran fibre alters the conformation and inhibits the activity of porcine pancreatic lipase. Journal of Functional Foods 19:39–48. doi:10.1016/j.jff.2015.09.012.

Rakić T, Kasagić­Vujanović I, Jovanović M, Jančić­ Stojanović B, Ivanović D. 2014. Comparison of Full Factorial Design, Central Composite Design, and Box­Behnken Design in Chromatographic Method Development for the Determination of Fluconazole and Its Impurities. Analytical Letters 47(8):1334– 1347. doi:10.1080/00032719.2013.867503.

Ritala A, Häkkinen ST, Toivari M, Wiebe MG. 2017. Single cell protein­state­of­the­art, industrial landscape and patents 2001­2016. Front Microbiol. 8(OCT). doi:10.3389/fmicb.2017.02009.

Rubio­Arroyo MF, Vivanco­Loyo P, Juárez M, Poisot M, Ramírez­Galicia G. 2011. Bio­ethanol obtained by fermentation process with continuous feeding of yeast. J Mex Chem Soc. 55(4):242–245. Sabaté J, Sranacharoenpong K, Harwatt H, Wien M, Soret S. 2014. The environmental cost of protein food choices. Public Health Nutr. 18(11):2067–2073. doi:10.1017/S1368980014002377.

Schramm R, Abadie A, Hua N, Xu Z, Lima M. 2007. Fractionation of the rice bran layer and quantification of vitamin E, oryzanol, protein, and rice bran saccharide. J Biol Eng. 1. doi:10.1186/1754­1611­1­9.

Shuler ML, Kargi F. 2002. Bioprocess engineering: Basic concepts. New Jersey: Prentice­Hall International Inc. doi:10.1016/0168­3659(92)90106­2.

Singh RS, Chauhan K, Kaur K, Pandey A. 2020. Statistical optimization of solid­state fermentation for the production of fungal inulinase from apple pomace. Bioresour Technol Rep. 9. doi:10.1016/j.biteb.2019.100364.

Sondhi S, Saini K. 2019. Response surface based optimization of laccase production from Bacillus sp. MSK­01 using fruit juice waste as an effective substrate. Heliyon. 5(5). doi:10.1016/j.heliyon.2019.e01718.

Suberu Y, Akande I, Samuel T, Lawal A, Olaniran A. 2019. Optimization of protease production in indigenous Bacillus species isolated from soil samples in Lagos, Nigeria using response surface methodology. Biocatal Agric Biotechnol. 18. doi:10.1016/j.bcab.2019.01.049.

Sukma A, Jos B, Sumardiono S. 2018. Kinetic of biomass growth and protein formation on rice bran fermentation using Rhizopus oryzae. In: MATEC Web of Conferences, volume 156. doi:10.1051/matecconf/201815601023.

Vogel HC, Todaro CM. 2014. Fermentation and Biochemical Engineering Handbook: Principles, Process Design, and Equipment: Third Edition. Oxford: Elsevier Inc. doi:10.1016/C2011­0­05779­4.

Xu Z, Hua N, Samuel Godber J. 2001. Antioxidant activ­ity of tocopherols, tocotrienols, and γ­oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2′­azobis(2­methylpropionamidine) dihydrochloride. Journal of Agricultural and Food Chemistry 49(4):2077–2081. doi:10.1021/jf0012852.

Yunus FuN, Nadeem M, Rashid F. 2015. Single­cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. Journal of the Institute of Brewing 121(4):553–557. doi:10.1002/jib.251.



DOI: https://doi.org/10.22146/ijbiotech.57561

Article Metrics

Abstract views : 2168 | views : 2213

Refbacks



Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.