Physiological, biochemical and HSP70 and HSP90 gene expression profiles of tropical abalone Haliotis squamata in response to Vibrio alginolyticus infection

https://doi.org/10.22146/ijbiotech.51322

Ngurah S. Yasa(1), Murwantoko Murwantoko(2*), Niken S. N. Handayani(3), Gemi Triastutik(4), Lutfi Anshory(5)

(1) Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta, 55281, Indonesia; National Broodstock Centre for Shrimp and Mollusk, Abalone Hatchery Unit, Tigaron, Karangasem, Bali, Indonesia
(2) Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta, 55281, Indonesia
(3) Department of Genetics, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara Bulaksumur, Yogyakarta, 55281, Indonesia
(4) National Broodstock Centre for Shrimp and Mollusk, Abalone Hatchery Unit, Tigaron, Karangasem, Bali, Indonesia
(5) National Broodstock Centre for Shrimp and Mollusk, Abalone Hatchery Unit, Tigaron, Karangasem, Bali, Indonesia
(*) Corresponding Author

Abstract


Vibrio spp. have been known responsible for fish diseases in marine and brackish‐water systems in the tropics regions. Heat shock proteins are a highly conserved protein group that is known for its rapid response to environmental stresses, including infection. This study aimed to investigate physiological and biochemical responses of tropical abalone Haliotis squamata to Vibrio alginolyticus infection. Abalones were infected with V. alginolyticus by intramuscular injection at a dose of 105,106,107 cfu/abalone. The expression of HSP70 and HSP90 genes, the activity of superoxide dismutase, phenol oxidase and catalase enzymes, histology, falling and mortality were observed at 12, 24, 48, 72, and 96 hours post‐infection (hpi). The different expression of HSPs was found in this study. While the expression of HSP70 was downregulated after infection, the expression of HSP90 was upregulated at 12 hpi and followed by downregulated after 24 hpi for 106 cfu infection, but expressed at a normal level for 105 infection treatment. The expression ofsuperoxide dismutase and catalase increased within 12 hpi, and the expression of phenol oxidase increased after 24 hpi. V. alginolyticus is virulent with LD50 of less than 105 cfu on H. squamata with an average weight of 5.13 g, and caused enlargement of hemolymph sinus and development intraepithelial and intramuscular abscesses.


Keywords


H. squamata; V. alginolyticus; physiology; HSP; histology

Full Text:

PDF


References

Bondad­Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, Tan Z, Shariff M.
2005. Disease and health management in Asian aquaculture. Vet Parasitol. 132(3­4):249–272. doi:10.1016/j.vetpar.2005.07.005.

Buss JJ, Harris JO, Currie KL, Stone DAJ. 2017. Survival and Feeding of Greenlip Abalone (Haliotis laevigata) in Response to a Commercially Available Dietary Additive at High Water Temperature. J Shellfish Res. 36(3):763–770. doi:10.2983/035.036.0326.

Cai J, Han H, Song Z, Li C, Zhou J. 2006a. Isolation and characterization of pathogenic Vibrio
alginolyticus
from diseased postlarval abalone, Haliotis diversicolor supertexta (Lischke). Aquacult Res. 37(12):1222–1226. doi:10.1111/j.1365­2109.2006.01552.x.


Cai J, Han Y, Wang Z. 2006b. Isolation of Vibrio parahaemolyticus from abalone (Haliotis diversicolor supertexta L.) postlarvae associated with mass mortalities. Aquaculture. 257(1­4):161–166.
doi:10.1016/j.aquaculture.2006.03.007.


Cheng P, Liu X, Zhang G, He J. 2007. Cloning and expression analysis of a HSP70 gene from Pacific abalone (Haliotis discus hannai). Fish Shellfish Immunol. 22(1­2):77–87. doi:10.1016/j.fsi.2006.03.014.

Cheng W, Li CH, Chen JC. 2004. Effect of dissolved oxygen on the immune response of Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Aquaculture 232(1­4):103–115.
doi:10.1016/S0044­8486(03)00488­5.


Datkhile KD, Mukhopadhyaya R, Dongre TK, Nath BB. 2009. Increased level of superoxide dismutase (SOD) activity in larvae of Chironomus ramosus (Diptera: Chironomidae) subjected to ionizing radiation. Comp Biochem Physiol, Part C: Toxicol Pharmacol. 149(4):500–506. doi:10.1016/j.cbpc.2008.11.003.

Di G, Kong X, Zhu G, Liu S, Zhang C, Ke C. 2016. Pathology and physiology of Haliotis diversicolor
with withering syndrome. Aquaculture. 453(1):1–9. doi:10.1016/j.aquaculture.2015.11.030.


Fang Z, Sun Y, Zhang X, Wang G, Li Y, Wang Y, Zhang Z. 2019. Responses of HSP70 Gene
to Vibrio parahaemolyticus Infection and Thermal Stress and Its Transcriptional Regulation Analysis
in Haliotis diversicolor. Molecules. 24(162):1–23. doi:10.3390/molecules24010162.


Farcy E, Serpentini A, Fiévet B, Lebel JM. 2007. Identification of cDNAs encoding HSP70 and HSP90
in the abalone Haliotis tuberculata: Transcriptional induction in response to thermal stress in
hemocyte primary culture. Comp Biochem Physiol, Part B: Biochem Mol Biol. 146(4):540–550.
doi:10.1016/j.cbpb.2006.12.006.


Hooper C, Day R, Slocombe R, Benkendorff K, Handlinger J, Goulias J. 2014. Effects of severe heat stress on immune function, biochemistry and histopathol­ogy in farmed Australian abalone (hybrid Haliotis laevigata×Haliotis rubra). Aquaculture. 432(1):26–37. doi:10.1016/j.aquaculture.2014.03.032.

Hsu TH, Gwo JC. 2017. Genetic diversity and stock identification of small abalone (Haliotis diversicolor)
in Taiwan and Japan. PLoS ONE. 12(6):e0179818. doi:10.1371/journal.pone.0179818.


Jiang Q, Shi L, Ke C, You W, Zhao J. 2013. Identification and characterization of Vibrio harveyi associated with diseased abalone Haliotis diversicolor. Dis Aquat Org. 103(2):133–139. doi:10.3354/dao02572.

Karunasagar I, Karunasagar I, Otta SK. 2003. Disease problems affecting fish in tropical environments. J Appl Aquac. 13(3­4):231–249. doi:10.1300/J028v13n03_03.


Liu PC, Chen YC, Huang CY, Lee KK. 2000. Virulence of Vibrio parahaemolyticus isolated from cultured small abalone, Haliotis diversicolor supertexta, with withering syndrome. Lett Appl Microbiol. 31(6):433–437. doi:10.1046/j.1365­2672.2000.00843.x.

Liu PC, Chen YC, Lee KK. 2001. Pathogenicity of Vibrio alginolyticus isolated from diseased small
abalone Haliotis diversicolor supertexta. Microbios. 104(408):71–77.

Magnadóttir B. 2006. Innate immunity of fish (overview). Fish Shellfish Immunol. 20(2):137–151. doi:10.1016/j.fsi.2004.09.006.

Nicolas JL, Basuyaux O, Mazurié J, Thébault A. 2002. Vibrio carchariae, a pathogen of the abalone Haliotis tuberculata. Dis Aquat Org. 50(1):35–43. doi:10.3354/dao050035.


Nishimori E, Hasegawa O, Numata T, Wakabayashi H. 1998. Vibrio carchariae causes mass mortalities in Japanese abalone, Sulculus diversicolor supratexta. Fish Pathol. 33(5):495–502. doi:10.3147/jsfp.33.495.


Park K, Lee JS, Kang JC, Kim JW, Kwak IS. 2015. Cascading effects from survival to physiological activities, and gene expression of heat shock protein 90 on the abalone Haliotis discus hannai responding to continuous thermal stress. Fish Shellfish Immunol. 42(2):233–240. doi:10.1016/j.fsi.2014.10.036.

Paulino MG, Benze TP, Sadauskas­Henrique H, Sakuragui MM, Fernandes JB, Fernandes MN.
2014. The impact of organochlorines and metals on wild fish living in a tropical hydroelectric
reservoir: Bioaccumulation and histopathological biomarkers. Sci Total Environ. 497­498(1):293–306.
doi:10.1016/j.scitotenv.2014.07.122.


Pridgeon JW, Klesius PH. 2012. Major bacterial diseases in aquaculture and their vaccine development. CAB Rev. 7:48. doi:10.1079/PAVSNNR20127048.


Qian Z, Liu X, Wang L, Wang X, Li Y, Xiang J, Wang P. 2012. Gene expression profiles of four heat
shock proteins in response to different acute stresses in shrimp, Litopenaeus vannamei. Comp Biochem
Physiol, Part C: Toxicol Pharmacol. 156(3­4):211–220. doi:10.1016/j.cbpc.2012.06.001.


Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY. 2010. Heat shock proteins (chaperones) in fish and
shellfish and their potential role in relation to fish health: A review. J Fish Dis. 33(10):789–801.
doi:10.1111/j.1365­2761.2010.01183.x.


Rungrassamee W, Leelatanawit R, Jiravanichpaisal P, Klinbunga S, Karoonuthaisiri N. 2010. Expression
and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon. Dev Comp Immunol. 34(10):1082–1089. doi:10.1016/j.dci.2010.05.012.


Wang N, Whang I, Lee JS, Lee J. 2011. Molecular characterization and expression analysis of a heat shock protein 90 gene from disk abalone (Haliotis discus). Mol Biol Rep. 38(5):3055–3060. doi:10.1007/s11033­010­9972­x.

Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat­shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9(5):244–252. doi:10.1016/j.tplants.2004.03.006.


Xie Y, Song L, Weng Z, Liu S, Liu Z. 2015. Hsp90, Hsp60 and sHsp families of heat shock protein genes
in channel catfish and their expression after bacterial infections. Fish Shellfish Immunol. 44(2):642–651.
doi:10.1016/j.fsi.2015.03.027.


Yao T, Zhao MM, He J, Han T, Peng W, Zhang H, Wang JY, Jiang JZ. 2019. Gene expression and phenoloxidase activities of hemocyanin isoforms in response to pathogen infections in abalone Haliotis
diversicolor
. Int J Biol Macromol. 129:538–551. doi:10.1016/j.ijbiomac.2019.02.013.


Zhang Z, Wang J, Zhang J, Su Y, Huang Y, Yan Q. 2001. Bacterial diseases of Haliotis diversicolor supertexta in Dongshan, Fujian. J Oceanogr Taiwan Strait. 20(2):193–199.




DOI: https://doi.org/10.22146/ijbiotech.51322

Article Metrics

Abstract views : 6805 | views : 2282

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.