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ABSTRACT Given the current status of climate change and its impact on global food security, it is imperative to improve
the abiotic stress tolerance of crop plants to enhance productivity. Traditional plant breeding methods have been widely
employed to develop climate‐resilient crops; however, their success has been limited due to the lack of understanding of
the complex relationships between genes and stress‐related phenotypes. The advent of modern genomics has enabled the
expression analysis of stress genes in plants, as genome‐wide information is readily accessible and can be utilized to assign
and validate the gene functions. This article highlights the potential applications and limitations of present‐day genomic
technologies based on genome mapping, gain or loss‐of‐function analysis for identification of the role of a particular gene
in abiotic stress response in plants. Such technologies are highly efficient in candidate gene identification; gene‐trait
relationships establishment; functional elucidation of genes; and stress genes modification in crop plants. Modern high
throughput genomic technologies offer wide scope for deciphering the complexities of genetic regulation of stress in plants;
modulating stress responses; and developing stress tolerance in crop plants against drought, temperature, salinity, osmotic
imbalance, herbicides and heavy metal toxicity.
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1. Introduction

The world’s rapidly growing population has raised con­
cerns regarding sustainability, particularly in terms of food
security, adequacy, and nutritional deficiency, which are
among the most critical global challenges. The Food and
Agriculture Organization (FAO) has envisaged a roadmap
to achieve food security and fulfill the SDG2 ensuring zero
hunger through C­neutral agri­food systems, complying
with the limits of 1.5 °C of Paris Agreement (FAO 2023).
This necessitates an increase in agricultural productivity
for which there could be several possibilities such as in­
creasing arable land area, increasing food imports to meet
the food demand, and increasing the use of fertilizers and
pesticides to enhance crop yield. However, each of these
options has an unsustainability factor associated with it
that jeopardize the sustainable development goals in one or
the other way. The population growth of a country and its
subsequent industrial and economic development together
exert pressure on land resource and force to put the agri­
cultural land into other uses, contributing to reduction in
agricultural productivity. Higher food imports result in a
larger carbon footprint, and increased use of chemical fer­

tilizers and pesticides poses significant hazards to human
and environmental health. Further, about 50% reduction
in global crop production has been attributed to environ­
mental stresses which not only account for economic loss
of nearly 20 million USD, but also pose a serious threat to
food security (Kaur et al. 2022).

Climate change imposed environmental perturbations
cause various stresses to crop plants, such as salinity stress,
osmotic stress, drought stress, high temperature stress, and
cold or chilling stress. Aggravating the situation, the an­
thropogenic pollution harming soil and water leads to pol­
lutant stress in plants such as heavy metal toxicity. These
stress factors not only impact the growth, development,
phenology and vigor of crops, but also reduce the yield
and productivity. Therefore, achieving the food security
goal in a sustainable manner would require a substantial
shift to climate resilient agriculture. This is only possi­
ble if the crop productivity is enhanced by cultivating cli­
mate resilient and abiotic stress tolerant crops. Traditional
methods of producing abiotic stress tolerant crops were
largely dependent upon the plant breeding approaches of
desired trait selection following various crosses between
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suitable parents. However, the success used to be very lim­
ited due to many reasons such as the epigenetic variations,
polygenic inheritance of characters, complexity of gene/
loci architecture and lack of precise information about the
gene­trait relationship.

The exposure of plants to one or multiple stressors
elicits many responses simultaneously at physiological
and genetic/epigenetic level, as a strategy to combat and
tolerate stress. These responses are often manifested as
altered phenotypes that would enable the plants to survive
under stress. Stress defense in plants is widely studied
based on morphology and appearance, antioxidant mech­
anisms, signaling pathways, growth regulation and sec­
ondary metabolism (Vijayalakshmi and Shourie 2019).
The clues for underlying molecular basis of the stress de­
fense mechanism in plants lie in stress­guided gene pro­
gramming, therefore it is important to identify the genes
involved in generating the stress trait and understand the
gene functions governing the stress responses (He et al.
2018). Several decades ago, the researchers ascertained
the function of the genes implicated directly or indirectly
in the abiotic­stress response often through gene­by­gene
method. However, with the advent of modern genomics,
the expression analysis of stress related genes in plants
has become very convenient as genome­wide information
is readily accessible to be utilized to assign and validate
the gene functions. Such information is highly valuable
for genetic engineering of target genes at precise loci and
modification of crop plants to improve stress tolerance and
produce a desired trait (Bhat et al. 2021).

Exploration of different genes functions in a high­
throughput mode is possible through functional genomics
that combines many parallel techniques, such as global
transcript profiling and the application of mutants and
transgenics. Present day genomics technologies like
genome­wide association studies (GWAS) provide a sig­
nificant tool to uncover genetic intricacies of abiotic stress
signal transduction and subsequent plant responses. The
techniques also offer the foundation to device novel strate­
gies leading to increased stress­tolerance in crop plants,
such as gene editing through clustered regulatory inter­
spaced short palindromic repeats (CRISPR) or by using
customized nucleases, to prevent the chronic loss in crop
yield (Bhat et al. 2021), as depicted in Figure 1.

This review explores the suitability and potential of

genomics to impart abiotic­stress tolerance targeting crop
improvement. The critical commentary on various ge­
nomics tools like GWAS, QTL mapping, ESTs, CRISPR,
engineered nucleases and gene silencing strategy is pre­
sented to give a bird’s eye view of their advantages, ap­
plications, and drawbacks. The focus of this article is
placed on summarizing the existing research to present a
broad account of usage of genomics techniques in past two
decades for developing tolerance of plants against abiotic
stresses like drought, salinity, temperature, osmotic imbal­
ance, herbicides, and heavy metal toxicity, which would
be useful for further exploration of the opportunities of­
fered by the advances in high­throughput genomics.

2. Discussion

2.1. Identification of abiotic stress related genes
2.1.1 Quantitative trait loci (QTL) mapping

Mapping of quantitative trait loci has become a popular
tool to elucidate the complexities of trait gene relation­
ship, unravel gene architecture related to the trait and deci­
pher the candidate genes. It has emerged as a modern ap­
proach to crop plant breeding due to its potential to reveal
the genes consistently expressing desired agronomic traits
under various abiotic stresses, which could act as valuable
molecular markers (Raj and Nadarajah 2023).

QTL associated with drought related traits in maize
were mapped through single nucleotide polymorphism
(SNP) genotyping which could be useful in plant breeding
through marker­assisted selection. Similarly, novel SNPs
responsible for imparting drought tolerance in Phaseolus
vulgariswere also identified (Villordo­Pineda et al. 2015).
The study revealed major QTLs related to growth, phys­
iology, stress signaling and yield under drought condi­
tions in maize (Sarkar et al. 2023). Genes contributing
to drought tolerance were analyzed and QTLs associated
with drought stress index were identified in germinating
seeds of Brassica napus and in cotton (Gad et al. 2021;
Abdelraheem et al. 2021).

Plant genomes are large and highly repetitive, making
it difficult to correlate stable and reliable QTLs with spe­
cific traits. The QTLs are typically mapped in large confi­
dence intervals (CI) and are restricted only to the genetic
diversity of the segregating population parents. They can

FIGURE 1 Genomics approach for developing abiotic stress tolerance in crop plants.
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leave some loci undetected as they map multiple loci that
influence the same trait (Ma et al. 2022). Low mapping
resolution limits the identification of complete functional
diversity within the natural population (Xu et al. 2017).

2.1.2 Genome­wide association studies (GWAS)

GWAS provide an opportunity to scan the genome for the
identification of the associations betweenmolecular mark­
ers and desired traits. However, this requires genotyping a
sufficient number of markers throughout the genome that
exhibit strong linkage disequilibrium (LD) with the func­
tional variant(s) particularly in cases where multiple traits
are correlated or interactions like epistasis exist (Devate
et al. 2022). Thus, irrespective of the kind of mapping
population, GWAS use a large number of molecular mark­
ers for mapping of QTLs to gauge the genetic diversity
among various cultivars. The application of GWAS in un­
raveling tolerance mechanisms in plants is studied against
several stress factors like drought, salinity, temperature
and osmotic imbalance. It has been utilized effectively
to identify cold tolerance genes in the 1033 rice diversity
panel and cold tolerance­associated genetic loci namely
LOC_Os10g34840 was attributed to the cold­tolerance in
the seedlings (Xiao et al. 2018). A genome wide study
analyzing 33,009 SNPs found 31 SNPs on chromosome
3, one SNP on chromosome 2 and 7 as novel QTLs to
be associated significantly with salt tolerance, and recom­
mended several markers on chromosomes 2, 3, 14, 16,
and 20 for marker­assisted selection and breeding of salt­
tolerant soybean varieties (Zeng et al. 2017).

GWAS mapping is highly recommended for traits that
are controlled by a minor number of loci having large ef­
fects; however, its application is limited for complex ge­
netic architecture which presents a number of common
variations of small phenotypic effects. Thus, due to the
highly quantitative nature of many abiotic stress related
phenotypes in plants, GWAS may not successfully iden­
tify the causative loci (Saini et al. 2022).

2.1.3 Expressed sequence tags (EST)

ESTs are small fragments of mRNA sequences derived
from cloned cDNA, sequenced in a single shot. High
throughput ESTs are very useful in delineating the ge­
nomic regions of crops and uncovering the expression pat­
terns of genes, thus are used as efficient and rapid strategy
to identify target genes. The EST databases are the most
abundant source of coding sequences and despite their low
accuracy they are highly useful for similarity searches.
Mulberry EST encoding remorin (MiREM) was identi­
fied and used in the molecular and functional characteriza­
tion involved in abiotic stresses mainly mediating osmotic
stress (Checker and Khurana 2013). The major disadvan­
tage associated with the usage of ESTs as genetic mark­
ers is that they are derived from expressed genes which
are mostly conserved, thus exhibit less polymorphism than
genomic simple sequence repeats (SSRs). Since high de­

gree of redundancy exists in EST libraries, it is difficult
to ascertain the relative modifications in transcript levels
(Guzinski et al. 2016).

2.1.4 Virus­induced gene silencing (VIGS)

VIGS is a versatile and powerful tool used in both for­
ward and reverse genetics through silencing of transcrip­
tional genes, off­target genes, post­transcriptional genes
(PTGS), non­integration­based transmissible PTGS, and
heterologous genes (Ramegowda et al. 2014). VIGS could
help in identifying numerous abiotic stress­related genes
implicated in drought (Ogata et al. 2017), deficiency of
nutrients (Atwood et al. 2014), salinity stress and oxida­
tive stress (Cai et al. 2017).

There are various VIGS vectors like the Tobacco Rat­
tle Virus (TRV) which are used for overcoming abiotic
stresses like heat (Singh et al. 2017), cold (Jia et al. 2016),
drought (Liang et al. 2016a), oxidative (Singh et al. 2019),
drought and salinity (Liang et al. 2016b). In cotton, by us­
ing CLCrV as VIGS vector and target gene as GhNAC79
reduced drought stress (Guo et al. 2017). TaBTF3 was
used as the target gene and BSMV as the VIGS vector to
reduce drought stress in wheat (Kang et al. 2013).

VIGS is a robust genomics tool for high throughput
forward genetic screening as well as gene validation; how­
ever, it has certain limitations that should be addressed. Si­
lencing a gene that imparts tolerance to plant against cer­
tain abiotic stress might enhance its susceptibility many
times and elicit other defense response genes similar in
function. Virus infection can itself cause concurrent abi­
otic and biotic stresses. In both the cases, the overlap­
ping responses might make it difficult to ascertain the gene
function. The factors influencing rate of viral infection and
multiplication can also affect the silencing, resulting into
delayed gene expression or appearance of a different phe­
notype. In several instances it was found that VIGS did
not completely suppress the target gene and even after the
down­regulation of its expression by 75–90%, the reduced
transcript levels could still result in functional proteins and
phenotypes (Rössner et al. 2022).

2.2. Genome editing for abiotic stress tolerance
2.2.1 Zinc­finger nucleases (ZFNs) and transcription

activator­like effector nucleases (TALENs)

ZFNs and TALENs are site­specific nuclease systems that
have transformed genome editing and have allowed mod­
ification of precisely targeted specific gene of interest.
ZFNs identify a broad range of triplet nucleotides and al­
low zinc fingers to join at the target of interest (Figure
2). TALENs can target any sequence because they have
non­specific DNA­cleaving nuclease at the DNA­binding
domain. TALENs are often preferred over ZFNs as they
are easy to design and use, exhibit higher specificity to­
wards target and show less off­target cleavages. ZFN­
mediated targeted transgene integration was achieved in
maize genome leading to stacking of herbicide resistance
traits. Genome editing targeting SWEET genes encoding
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sugar transporters have been performed for disease resis­
tance in cassava, cotton and rice (Zhou et al. 2015; Cox
et al. 2017). Another customized dTALE gene activated
the recessive resistance allele xa13 of susceptibility gene
Os8N3 (a member of SWEET gene family) and conferred
resistant to Xoo susceptible rice cultivar IRBB13 (Li et al.
2013b).

ZFNs and TALENs consist of a specific DNA­binding
sequence and a FokI nuclease domain that is functional
only as a dimer. The DNA binding modules in each pair
of ZFN and TALEN are required to be designed to provide
the target specificity so that nuclease is able to dimerize
and introduce double­stranded DNA breaks at the required
site. The target­specific designing is difficult and expen­
sive (Wada et al. 2020). The use of homo­dimeric FokI
domains in ZFNs could lead to appearance of undesirable
dimeric species. This has been overcome by designing
hetero­dimeric FokI domains which prevents formation
of homodimers and enhances the specificity of cleavage
(Kaur et al. 2022).

2.2.2 Clustered regularly interspaced short palin­
dromic repeat (CRISPR)­Cas9

CRISPR­Cas9 is a popular genome­editing tool involving
an RNA­guided endonuclease Cas9 (Figure 3). The 366
bp deletion in dst mutants down­regulated the genes in­
volved in development of stomata, thus the mutants ex­
hibited improved tolerance against drought and salt stress
via reduced stomatal density (Santosh Kumar et al. 2020).
The native maize GOS2 promoter was used to replace the
native ARGOS8 promoter using CRISPR­Cas, which re­
sulted in the increased levels of ARGOS8 transcripts con­
ferring drought tolerance (Shi et al. 2017a). In tomato,
SIMAPK3 gene which contains TEY motifs (refers to a
conserved Thr­Glu­Thy motif) that regulate abiotic stress
responses, was edited through this technology to develop
drought tolerance (Wang et al. 2017b). In cotton, the genes
GhRDL1 and GhPIN1­3 were edited by the CRISPR­Cas
technique to overcome drought stress (Dass et al. 2017).

APL and APS genes encoding the large and small subunits
of ADP­glucose pyrophosphorylase (AGPase) enzyme in­
volved in starch biosynthesis, show differential responses
to abiotic and biotic stresses in banana (Miao et al. 2017).
Single and double mutants of APL and APS both genes
were created in rice using CRISPR­Cas9 system and the
two genes were implicated in alteration of phosphorus (P)
homeostasis and Pi starvation signaling (Meng et al. 2020).

The application of CRISPR in plants has several in­
herent limitations, such as the need for detailed informa­
tion and accessibility of the plant genome sequence. With­
out this information, it is difficult to find potential edit­
ing targets, create the complementary guide RNA (gRNA)
sequences required to guide Cas nucleases to the target
site, or evaluate gRNAs’ off­target activity (Venezia and
Creasey Krainer 2021). CRISPR/Cas is likely to cause
the off­target mutations, which in certain cases could raise
concerns. Further there could be possibilities of on­target
unintentional mutations like insertions, deletions or inver­
sions, which have not been well researched in plants as of
now (Hahn and Nekrasov 2019).

2.2.3 Homing endonucleases or mega­nucleases

Mega­nucleases are classified based on their sequence
and motifs into five families which are LAGLIDADG
(most widely used), GIY­YIG, His­Cyc box, HNH and
PD­(D/E)XK (Silva et al. 2011). One of the successful
applications of mega­nuclease techniques has been seen
in gene stacking in cotton where precision­targeted trans­
gene insertion was achieved at a cotton elite locus. Tar­
geted nucleic acid cleavage by nucleases combined with
tailored specificities and homologous recombination me­
diated double­strand break (DSB) repair by naturally oc­
curring DNA repair pathways makes this conceivable. In
cotton, two transgenes for herbicide tolerance i.e. hppd
of Pseudomonas fluorescens and epsps gene of maize,
were introduced near a locus consisting of insect resis­
tance transgene, to generate a gene­stack (D’Halluin et al.
2013). Meganucleases are also employed to generate tar­

FIGURE 2 Genome editing using zinc‐finger nucleases (ZFN).
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FIGURE 3 Genome editing using CRISPR‐Cas9.

geted knockout­mutations. For example, two maize loci,
ms 26 and liguless­1 were mutagenized using CreI­based
meganuclease from C. reinhardti to induce male sterility
(Djukanovic et al. 2013). Although mega­nucleases are
useful tools for deletion and insertion at the targeted loci
with good frequency, because of certain limitation their
use in genome engineering is not as prevalent as ZFNs or
TALENs. Some of the drawbacks associated with them
are first the overlap of DNA binding and cleavage do­
mains cause decrease in rate of catalysis of the enzyme;
second, unlike ZFNs and TALENs, mega­nucleases lack
the modular DNA­binding domain architecture found in
ZFNs and TALENs; and third, sequence degeneracy in
mega­nucleases can occasionally occur, which increases

the possibility of off­target binding (Stoddard 2011).

2.3. Improvement of crops against abiotic‐stress
through genomics approaches

The crop responses against different abiotic stresses are
highly complex and multidimensional and several reg­
ulatory networks involving genes, transcription factors
and proteins interact together to impart tolerance to plant
against the stress (Shourie et al. 2014). Often the gene­
trait relationships are not direct and very difficult to pre­
dict, therefore genomics offer several advantages for high
throughput and accurate screening that could be utilized in
crop improvement (Figure 4).

FIGURE 4 Schematic for improvement of abiotic stress tolerance in crop plants through genomics.
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Applications of genomics in enhancing tolerance of
crops against drought, temperature, salinity, osmotic stress
and heavy metal toxicity through identification of candi­
date gene and its subsequent silencing, editing or engineer­
ing are summarized in Table 1.

2.3.1 Drought stress

One of the main factors reducing agricultural yields glob­
ally is drought. There are several other environmental
stress factors that accompany drought such as high tem­
perature, low soil and air moisture, poor soil health and
lack of nutrient availability to plants. Thus, plants ex­
posed to drought experience a multitude of stresses which
causes a series of overlapping molecular and physiolog­
ical events to occur. Identification of genes involved in

drought stress signaling is imperative for crop improve­
ment. GWAS was performed on Aegilops tauschii, a close
relative of wheat Triticum aestivum L., using around 7185
SNP markers to understand and identify QTLs functional
against drought stress (Qin et al. 2016). In a study, genes
OMTN3, OMTN4, OMTN2, and OMTN6 were targeted in
rice as their overexpression resulted into a negative effect
on drought resistance (Zhang et al. 2017a).

Role of SlNPR1 I was studied in regulating stress re­
sponse through generation of slnpr1 mutants using the
CRISPR/Cas9 system in tomato and the reduced toler­
ance of mutants towards drought indicated that SlNPR1
was involved in the expression of drought related genes
like SlGST, SlDHN, and SlDREB (Li et al. 2019).
CRISPR/Cas9 editing was applied in wheat on drought
responsive genes such as TaDREB2 and TaERF3, which

TABLE 1 Applications of genomics for crop improvement against abiotic stress.

No Abiotic Stress Plant Identification of Target Gene/
Loci

Genomics Tool/
Technology
implemented

References

1 Drought stress Arabidopsis thaliana miR169a as negative factor for
drought tolerance CRISPR (Zhao et al. 2016)

2 Solanum piminellifolium SpMPK2, SpMPK1 & SpMPK3 VIGS (Li et al. 2013a)

Brassica napus
BnaC09.RPS6, BnaC09.MATE,
BnaA10.PPD5 and
BnaC09.Histone

GWAS (Shahzad et al. 2021)

3 Vicia faba L. 29 SNPs identified GWAS (Gutiérrez et al. 2023)
4 Triticum aestivum L. 94 SNPs identified GWAS (Reddy et al. 2023)

5 Solanum lycopersicum L. cv.
Ailsa Craig Silencing ofWRKY81 VIGS (Ahammed et al. 2020)

6 Temperature Stress Oryza sativa SPKST for spikelet sterility GWAS (Lafarge et al. 2017)
7 OsAnn3 for cold tolerance CRISPR/Cas9 (Shen et al. 2017)

8 Sorghum bicolor Sb06g025040 for
temperature‐resistant GWAS (Chopra et al. 2017)

9 Solanum lycopersicum BZR1 for heat stress response CRISPR/Cas9 (Yin et al. 2018)

10 Salinity Stress Triticum aestivum L.

Five genes encoding kinase family
protein, transmembrane protein
ligase‐like protein, E3
ubiquitin‐protein, and ligase‐like
protein

GWAS (Quan et al. 2021)

11 Zea mays ZmHKT1 ‐ a major salt‐tolerant
QTL CRISPR/Cas9 (Zhang et al. 2017b)

12 Oryza sativa OTS1 ‐ a salt stress regulator CRISPR/Cas9 (Zhang et al. 2019)
13 OsNAC041 CRISPR/Cas9 (Bo et al. 2019)
14 SIT1 CRISPR/Cas9 (Li et al. 2014)

15 Heavy metal Stress Oryza sativa
qSdw12, qSdw3b, qSdw3a and
qSFe5 / qSZn5 ‐QTLs linked to Zn
and Fe toxicity

GWAS (Zhang et al. 2017c)

16 Brassica napus
BCATs, TBR, GSTUs UBP13, and
HIPP01‐ QTLs linked to Pb
tolerance

GWAS (Zhang et al. 2020)

17 Drought and Salinity
Stress Brassica juncea Four SRAP and two EST‐SSRs EST (Saini et al. 2019)

18 Drought and Heat
Stress Oryza sativa OsNAC006 CRISPR/ Cas9 (Wang et al. 2020)

19 Salinity and Heavy
metal Stress Sugarcane ScGluD2 CRISPR/Cas9 (Su et al. 2016)
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improved drought tolerance (Kim et al. 2018). With the
help of CRISPR­Cas9 editing of salt and drought tolerance
gene OsDST, indica mega rice cultivar MTU1010 dst mu­
tant was generated having broader leaves with less stom­
atal density that could enhance the leaf water retention to
tolerate drought condition (Ganie et al. 2021; Santosh Ku­
mar et al. 2020).

2.3.2 Temperature stress

Climate change caused by rising temperatures is a global
concern as it has resulted into poorer crop yields. Im­
pacts of temperature stress can be observed in different
ways such as loss of chlorophyll, low rate of photosyn­
thesis, slower pace and low rate of germination. Several
genome editing techniques have been applied to plants to
achieve temperature tolerance and improve plant perfor­
mance under non­ambient temperature. Identification of
temperature­tolerant genes using GWAS was applied in
Sorghum seedlings and 30 SNPs were found to be asso­
ciated with cold stress, while 12 SNPs with thermal stress
(Chopra et al. 2017). Another GWAS was employed on
167 rice varieties to evaluate the influence of tempera­
ture on plants during anthesis by studying the secondary
traits like panicle micro­climate, fertilization process and
spikelet sterility (SPKST), and it was concluded that genes
at SPKST locus and its nearby loci were associated with
many temperature stress related traits (Lafarge et al. 2017).
The role of the tomato C­repeat binding factor 1 (CBF1)
gene in conferring cold stress tolerance in tomato was dis­
covered by mutagenesis using CRISPR/Cas9, where the
cbf1 mutant tomato plants were shown to be sensitive to
stress, accumulating more indole acetic acid and experi­
encing increased electrolyte leakage (Li et al. 2018). VIGS
technology was applied to potatoes for transformation of
five genes ­ StWTF StSSH2, StFLTP, StBHP, StUGT and
StFLTP, that were involved in heat stress and the trans­
formed plants were successfully made resistant to heat
stress (Tomar et al. 2021).

2.3.3 Salinity stress

Salinity significantly affects the agricultural productivity,
particularly in semi­arid and arid regions. Exposure of
crop plants to excessive salinity leads to an increased in­
flux of Na+ and Cl­ ions in tissues of plants, which further
induces ROS generation and significant ion disruption in
cells. Several genes have been validated to improve salt­
stress resistance using CRISPR/Cas editing. In rice, the
multifunctional gene OsBBS1 was found to be involved in
salt stress sensitivity and early leaf senescence and theOs­
MIR528 gene was reported to be a positive regulator of salt
stress (Ganie et al. 2021). Through CRISPR/Cas9 tech­
nology, a rice gene called OsmiR535 that encodes micro­
RNA was modified. This gene controls the expression of
abiotic stress­responsive genes at the post­transcriptional
level. In comparison to the control plants, the knockout
osmir535 rice mutant plants performed better when ex­

posed to salt and drought stress (Yue et al. 2020). Salt­
tolerant genes across the crop diversity were identified
through GWAS in many crops. In a study, 6,361,920
SNPs from 478 various rice varieties were investigated for
seven seed germination­related parameters under control
and salt­stress situations and the connection between traits
and SNPs was identified using a mixed linear model (Shi
et al. 2017b).

Comparative analysis of ESTs related to various
stresses like salinity and drought was conducted in
seedlings of Lablab purpureus. ESTs were characterized
for their putative functions and relative fold expression
was estimated. It was proposed that different gene sets,
differentially express under the two stresses which could
lead to prediction of functions of specific ESTs (Kokila
and Devaraj 2021). In cotton, miRNA ghr­miR414c and
iron superoxide dismutase geneGhFSD1 collaborate in re­
sponse to salt­stress, resulting in enhancement ofGhFSD1
expression. SilencingGhFSD1 in cotton resulted in an ab­
normally hypersensitive phenotype to salt stress, whereas
overexpression of miR414c reduced GhFSD1 expression
while increasing tolerance to salinity stress, provided a
phenotype that was very similar to GhFSD1­silenced cot­
ton (Wang et al. 2019).

2.3.4 Osmotic stress

Plants are put under osmotic stress due to several envi­
ronmental conditions such as cold or chilling, excessive
salinity, and drought. The soil’s excess ions cause os­
motic stress, which reduces the osmotic potential and pre­
vents the uptake of water and nutrients. Functional re­
dundancy between HSFA6a and HSFA6b and their role in
abiotic stress tolerance in Arabidopsis thaliana was in­
vestigated. The two genes, edited using CRISPR/Cas9,
were suggested to offer osmotic stress tolerance by regu­
lating the reactive oxygen species (ROS) homeostasis in
plants (Wenjing et al. 2020). The involvement of the nu­
clear protein coilin in the stress resistance mechanisms of
Solanum tuberosum cultivar Chicago was investigated us­
ing CRISPR–Cas9 technology. Editing of one allele of the
gene not only increased tolerance of potato against salin­
ity and osmotic stress, but also enhanced the resistance
against potato virus Y (Makhotenko et al. 2019).

CRISPR/Cas9 technology was used as an effective
tool for functional reverse genetics to improve salinity and
osmotic tolerance in tomato by antisense downregulation
and loss of function of Auxin Response Factors ARF4
(Bouzroud et al. 2020). A group of 56 phenotypic fea­
tures were subjected to genome­wide association mapping
in salt and osmotic stress tests on winter barley using 4885
gene­based SNP markers. The researchers found 28 quan­
titative trait loci (QTLs), of which 10 dealt with salinity
stress and 20 with osmotic stress (Xue et al. 2019). Addi­
tionally, GWAS has been used to analyze 150,325 SNPs
across 175 upland rice accessions (Oryza sativa) under in­
vestigation with and without drought exposure. The study
discovered 50 genes, 30 of which were annotated, and 10
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ofwhich had previously been related to drought and/or abi­
otic stress tolerance (Pantalião et al. 2016).

2.3.5 Herbicide stress

Herbicides are widely used in agriculture worldwide, but
many herbicides decrease germination and growth, affect
plant reproduction and impact crop production. Herbi­
cide tolerance has been successfully induced in crop plants
using functional genomics. Genes encoding enzymes of
amino acid pathways have been widely engineered using
ZFNs, TALENs, and CRISPR­Cas to confer herbicide tol­
erance to plants. Many herbicides such as imidazolinones,
pyrimidinylthio (or oxy)­benzoates, triazolopyrimidines,
and sulfonylureas, impede the activity of the ALS (ace­
tolactate synthase) gene. Thus, this gene was edited using
the ZFN genome editing tool resulting in tolerance in to­
bacco for sulfonyl urea herbicides (Townsend et al. 2009).
In corn, ALS1, ALS2, andMoPAT genes were successfully
edited using CRISPR/Cas9 editing tool to achieve herbi­
cide tolerance. The ALS2 gene was edited utilizing single­
stranded (ss) oligonucleotides or ds DNA vectors as repair
templates, resulting in chlorsulfuron­resistant plants (Svi­
tashev et al. 2015). Using the CRISPR/Cas9 editing tool,
the precise editing of EPSPS (5­enolpyruvylshikimate­
3­phosphate synthase) genes, lead to the advancement
of herbicide­resistant trait in flax (Sauer et al. 2016).
Herbicides such as phenylpyrazoline (PPZ), aryloxyphe­
noxypropionate (APP), and cyclohexanedione (CHD) act
on ACCase, a key enzyme in fatty acid production. In rice
and wheat, this gene has been edited using CRISPR/Cas
to achieve herbicide resistance (Zhang et al. 2019). In a
study, genome­wide association mapping analysis was un­
dertaken to utilize field­collected sorghum biomass panel
(SBP) data to investigate the underlying tolerance mech­
anism, and a greenhouse test was constructed to confirm
the field phenotypes. A total of 26 SNPs on chromosome
3 were identified as targets of protoporphyrinogen oxidase
(PPO)­inhibiting herbicides (Adhikari et al. 2020).

2.3.6 Heavy metal stress

Heavy metals like Pb, Ni, Fe, Co, Hg, Cu, and As are
highly toxic and are found in high concentrations in in­
dustrial waste and sewage. The metabolism, physiology
and development, of plants can all be negatively impacted
by excessive amounts of these metals, even though many
of them are essential micronutrients that are involved in
a variety of plant activities. Many genome­editing tech­
niques have been applied to overcome heavy metal stress
in crop plants and improve crop production. Using the
CRISPR/Cas9 technique in rice, it was analyzed that tran­
scription factors OsARM1, an R2R3 MYB are involved
in the regulation of the response to As­ stress and con­
trolled the root­to­shoot translocation of As (Wang et al.
2017a). The molecular mechanisms underlying selenium
(Se) resistance and Se hyperaccumulation in the Se hyper­
accumulator Stanleya pinnata were investigated by con­

trasting it to the Se­resistant species S. albescens using a
combination of structural, physiological, biochemical, and
genomic techniques (Freeman et al. 2010). Cas 9 assisted
knockout of target gene OsNramp5 in Oryza sativa led to
reduced accumulation of cadmium in plants (Tang et al.
2017).

2.4. Transgenics for abiotic stress tolerance in crops
Transgenic technology has immense potential for devel­
oping stress tolerant plants and there are many studies in
which genetic transformation have been accomplished for
crop improvement. Transgenic rice was developed ex­
pressing AtDREB1A transcription factor using Agrobac­
terium­mediated transformation which successfully im­
parted resistance against drought stress without compro­
mising other important agronomic traits (Ravikumar et al.
2014). Transgenic rice was made salt tolerant by over­
expressing the stress­inducible SNAC1 gene (Nakashima
et al. 2007) andOsWRKY45­2 gene for higher ABA sensi­
tivity (Ye et al. 2009). Transgenic Arabidopsis plants ex­
pressing AtCBF3 demonstrated freezing tolerance, while
AtCBF4 overexpression provided freezing and dehydra­
tion tolerance. Similarly, transgenic Arabidopsis that ex­
pressed GmDREB2 under both constitutive and stress in­
ducible promoters demonstrated drought and salt stress
tolerance (Chen et al. 2007). Transgenic tobacco was de­
veloped that expressed LeNCED1 gene from tomato that
encodes a 9­cis­epoxycarotenoid dioxygenase implicated
in ABA biosynthesis; the transformants showed enhanced
ABA biosynthesis, increased guttation reduced stomatal
conductance and increased seed dormancy. Transgenic
potato cv. IPB CP1 was made through genetic trans­
formation incorporating MmCuZn�SOD transgene iso­
lated from Melastoma malabathricum L., encoding su­
peroxide dismutase, which conferred resistance against
multiple abiotic stresses such as salinity, aluminium and
drought stress (Musawira et al. 2022). Proline biosynthe­
sis genes have been transferred to economically important
crop plants, resulting in increased proline accumulation
and tolerance to environmental stresses. Inducing consti­
tutive expression of these genes has shown pleotropic ef­
fects (Kavi Kishor and Sreenivasulu 2014).

3. Conclusions

Genomics have indeed contributed immensely not only to
identify but also to modify abiotic stress­related genes in
crop plants, thereby alleviating the plants from stress. Tra­
ditional methods of crop improvement against environ­
mental stresses such as variant selection, induced muta­
tion selection and hybridization had very limited success
rate, whereas genomics technologies are far better and ef­
ficient in many ways (Table 2). The integrated nature of
abiotic stress signaling pathways results into high degree
of variability in response traits and enhances the com­
plexity of gene functions. Despite remarkable advance­
ments in genomics, major information gaps regarding the
molecular regulation of key biological processes still ex­
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TABLE 2 A comparison of traditional and modern technologies used for crop improvement against abiotic stress

Aspect Traditional Approaches Modern Technologies References

Technologies Used Plant Domestication Molecular Breeding (Gupta and Shaw 2020;
Banerjee et al. 2024)

Pure line and Mass selection Genomic Selection
Pedigree Breeding CRISPR‐Cas9 & Editing
Ideotype Breeding High‐Throughput Phenotyping
Hybrid Breeding Transcriptomics and Proteomics

Data Accuracy Subjective and liable to human error Objective, precise, and reproducible
data from automated systems (Chauhan et al. 2022; Jangra

et al. 2021)

Time Requirement Time‐consuming, often requires weeks
or months to assess stress impacts

Rapid, high‐throughput assessments in
real time (Muhammad Aslam et al.

2021; Zhang et al. 2024)

Cost Relatively low, but with high labor costs
due to manual processes

High initial cost due to equipment, but
reduced long‐term labor costs (Akinyi et al. 2022; Li et al.

2021)

Sensitivity Low sensitivity, cannot detect subtle
molecular changes

High sensitivity to detect early and
minor molecular changes related to
stress

(Murmu et al. 2024;
Chaturvedi et al. 2024)

Scalability Limited, difficult to scale due to
labor‐intensive nature

Highly scalable using automated
systems and robotics (Lowry et al. 2024; Poorter

et al. 2023)

Complexity of stress
tolerance traits

Limited by the complexity of stress
tolerance traits, low genetic variance of
yield components under stress
conditions

High complexity of stress tolerance
traits, high genetic variance of yield
components under stress conditions

(Raza et al. 2020)

Non‐invasive
Techniques

Generally invasive (e.g., sampling plant
tissue)

Non‐invasive techniques (e.g., imaging
technologies, spectrometry, and
fluorescence)

(Ye et al. 2023; Rico‐
Cambron et al. 2023)

Skill Requirement Requires experienced personnel for
proper visual assessment

Requires trained personnel for operating
sophisticated equipment (Singh et al. 2020; Zhang

et al. 2024)

Environmental Impact Can disturb the plant or environment
due to manual intervention

Minimal environmental disturbance
through remote sensing and imaging (El‐Ramady et al. 2019; Al‐

Tamimi et al. 2022)

ist which impede the development of abiotic stress tol­
erant plants. There is a huge need to comprehend the
composite connections between genes related to different
plant traits under distinct environmental situations. Pre­
cise gene functions often cannot be determined using a
single approach; to fully utilize genomics, a multidisci­
plinary approach and comprehensive understanding of the
molecular and other biological processes underlying var­
ious phenotypes are required. Currently, abiotic stress­
responsive genes are identified using a sequence similar­
ity approach to identify abiotic stress­responsive genes in
model crops. Advances in systems biology have resulted
in a high­speed and cost­effective method for creating a
massive number of sequences, which facilitates the iden­
tification of genes that regulate stress tolerance. Vari­
ous high­throughput techniques like next generation se­
quencing generate massive amount of data that is useful
to decipher the molecular mechanisms underlying stress
tolerance in plants. Novel bioinformatics tools and soft­
ware with higher resolving power and other technologi­
cal advancements are instrumental in rapid estimation and
comparison of gene functions. A multidisciplinary inte­
grated strategy permits the functional characterization of
plant genes to fully exploit the available genetic infor­

mation. Thus, the progress in developing stress­resilient
crop plants is dependent upon the development of high­
throughput technologies and the integration of multidisci­
plinary methodologies such as genomics, transcriptomics,
proteomics, epigenomics, and bioinformatics.
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