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ABSTRACT Mung bean (Vigna radiata L. Wilczek) is a self-pollinating and indispensable pulse crop in Indonesia. While
low yield productivity is a major concern, genetic improvement is possible through interspecific hybridization. However,
interspecific hybridization is relatively infrequent and produces low recombination exchanges, significantly limiting crop
breeding efficiency. Thus, a comprehensive study is needed of the selection and genetic diversity evaluation of progenies
in advanced generations derived from interspecific hybridization using a specific molecular marker. This study aims to
confirm the heterozygosity in the F2 population and assess the genetic diversity in F3 mung bean populations resulting from
interspecific hybridization between the mung bean and common bean. We designed the retrotransposon-based insertion
polymorphism (RBIP) marker by identifying the syntenic regions in the flanking sequences of retrotransposon insertion
in common bean and mung bean. The RBIP marker can be applied to distinguish the heterozygote progenies from the
homozygote progenies. Six combinations of sequence-related amplified polymorphism (SRAP) primers were used in the
genotyping of F3 mung bean progenies. The SRAP marker showed a high degree of polymorphism of up to 100%, while high
genetic variation was observed within the population (71%) of mung bean progenies. The F3.4 population had the greatest
number of genotypes and displayed the highest number of effective alleles, private alleles, and percentage of polymorphic
loci, suggesting the existence of high genetic diversity within this population. These genetic diversity data are exceptionally
critical for future genetic research since it has potentially high yield production. The genomic and marker-assisted selection
studies will support the major goals of the mung bean breeding program.
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1. Introduction genetic basis represent low genetic variability in primary
gene pool (Noble et al. 2018; Fatmawati et al. 2021).

Mung bean (Vigna radiata L. Wilczek) is an annual and

pulse crop, self-pollinated, and important legume crop in
Asia (Lin et al. 2020). Mung bean are rich in vitamins,
fibers, minerals, carbohydrates, proteins, and can be used
as potential crop for mitigation of malnutrition (Ganesan
and Xu 2018), and commonly used as supplemental dishes
and healthy food in Indonesia (Novidiyanto et al. 2019).
Mung bean is fairly resistant to abiotic stresses, but pro-
ductivity has remained low due to biotic challenges as well
as a lack of variation with significant yield potential, big
seed size, and high weight per seed. The production po-
tential of an Indonesian mung bean is up to 2.5 ton/ha,
with an average productivity of about 0.9 ton/ha (Taufiq
and Kristiono 2016). Cultivated mung bean had a narrow

To accelerate the genetic improvement of mung bean,
interspecific hybridization approach can be utilized for
creating interspecific recombinant and produce superior
genotypes through mung bean breeding project. Interspe-
cific hybridization is indispensable method for breeding
program (Zhan et al. 2017). Interspecific hybridization
has been reported for genetic speciation, genome evolu-
tion, genetic diversity, introgression novel gene as well
as improve adaptability to new environment, increasing
yield, and essential nutrition to support biofortified breed-
ing program (Abbas et al. 2015; Zhang et al. 2016; Yu et al.
2021). The common bean (Phaseolus vulgaris L.) and
mung bean, belonged to the Fabaceae family, separated
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from a common ancestor between 4.9 and 8 million years
ago (Lavin et al. 2005). Thus, the mung bean-common
bean linkage group is generally preserved, and synteny
analysis of mung bean unigene sequences indicated gene
function similarities with common bean (McClean et al.
2010).

Interspecific hybridization in mung bean has been re-
ported to be effective (Abbas et al. 2015; Pandiyan et al.
2020), but no studies of interspecific hybridization with
common bean have been reported. Although segregation
distortion has been reported in the majority of F2 progenies
derived from interspecific (Toyomoto et al. 2019; Shehzad
et al. 2021), we were able to successfully evaluate the F2
interspecific progenies from this crossing and maintain the
elite genotypes through pedigree selection for F3 genera-
tion. To validate the genetic constitution of interspecific
hybrids in mung bean, DNA marker is preferable to be
used for characterization of the genetic background on ma-
terial tested, compared to morphological characterization
since it is laborious task and often affected by environ-
mental condition (Sormin et al. 2021). In addition, DNA
marker can be applied to assess genetic diversity, evolu-
tion, and phylogeny, investigate heterosis, identify hap-
loid/diploid plants and cultivar genotyping, and marker as-
sisted selection (Nadeem et al. 2018).

Transposable element in particular retrotransposon is
relatively high abundant in mung bean genome (Kang
et al. 2014). This mobile element is well organized in
chromosomes and inserted into multiple gene loci (Se-
tiawan et al. 2020). Mung bean genome comprise of
repetitive sequences (50.1%), in which 36.5% consist of
long terminal repeat (LTR) retrotransposon (Kang et al.
2014). Interspecific hybridization may influence the ac-
tivation of mobile elements in hybrids, potentially lead-
ing to plant speciation and insertion of specific gene of
interest (Glombik et al. 2020). Thus, transposable el-
ements are useful to be utilized as molecular marker
due to their abundance in plant genome. Transposable
element-based markers such as inter-retrotransposon am-
plified polymorphism (IRAP), miniature-inverted repeat
transposable element (MITE), inter-SINE amplified poly-
morphism (ISAP), retrotransposon-based insertion poly-
morphism (RBIP) has been used in plant genotyping of
melon (Sormin et al. 2021), identification of somaclonal
variation in date palm (Mirani et al. 2020), and genetic di-
versity assessment in mango (Nashima et al. 2017).

Our previous works confirmed that the F2 population
of mung bean derived from interspecific hybrids was veri-
fied as genuine hybrids by employing a dominant IRAP
marker (Fatmawati et al. 2021). However, this marker
could not identify heterozygote genotypes, and a codomi-
nant marker is prefered for analyzing the genetic constitu-
tion of these hybrids. In addition, interspecific hybridiza-
tion is typically followed by whole-genome or fragmented
DNA duplication to ensure the stability of the genuine hy-
brids (Glombik et al. 2020). Therefore, the use of codom-
inant markers is critical for the identification of genotypes
containing the novel genetic recombination from both par-
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ents in the advanced generation. Even though single se-
quence repeat (SSR) is a codominant marker that has been
used to assess genetic diversity in mung bean accessions
(Kaur et al. 2018) and the hybrid vigor of mung bean F1
hybrids (Sorajjapinun et al. 2012), but it required many
primer-sets and was only appropriate for progenies derived
from intraspecific hybridization in which their parental
lines shared similar genomic constitutions. The retrotrans-
poson based codominant marker can be designed by de-
termining different allelic states at certain loci from both
parental lines utilized for interspecific hybridization by
identifying the flanking sequence of retrotransposon in-
sertion. The RBIP is a PCR-based marker that can de-
tect transposable element insertions in plant genomes at a
specific locus and provide an accurate DNA profile. The
genomic DNA can be amplified using LTR and flanking
region-specific primer sets. In addition, RBIP has been
used in plant genetic studies (Kim et al. 2012; Schulman
et al. 2012; Nashima et al. 2017).

After confirming and selecting the F2 was genuine hy-
brids, we developed an F3 population by selecting elite
genotypes from F2 population through pedigree selection.
Genetic variation in the F3 population is critical for the
mung bean breeding effort, particularly when determin-
ing advanced elite genotypes and/or choosing future par-
ents (Baenziger et al. 2011). The genetic diversity of the
F3 population can be analyzed using sequence-related am-
plified polymorphism (SRAP) (Purwantoro et al. 2023).
SRAP is a PCR-based marker, consist of 17 or 18 nu-
cleotides that amplified the open reading frames (Li and
Quiros 2001). SRAP is dominant marker which has been
successfully applied to investigate the genetic diversity in
Indian garlic (Benke et al. 2021) and mung bean (Aneja
et al. 2013). This study aimed to identify the flanking ge-
nomic sequences from both the mung bean and common
bean genomes and design the RBIP marker from a highly
conserved region to investigate heterozygosity in the F2
population. This work also aims to assess genetic diversity
in F3 mung bean populations resulting from interspecific
hybridization between the mung bean and common bean
using SRAP marker.

2. Materials and Methods

2.1. Plant materials

The F2 population of interspecific hybrids that used by
Fatmawati et al. (2021) was utilized to study their genetic
constitutions using the RBIP marker. Four elite genotypes
of mung bean selected from F2 generation were used for
F3 main population. Each elite genotype consisted of 16
plants. These 64 genotypes were derived from interspe-
cific hybridization [mung bean landrace 'lokal malang' (Vi-
gna radiata L. Wilczek) x common bean cultivar 'Lebat-
3" (Phaseolus vulgaris L.)]. The plants were cultivated in
Research Station of Banguntapan, Faculty of Agriculture,
Universitas Gadjah Mada, Yogyakarta from October 2020
until April 2021.
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TABLE 1 Marker utility of SRAP in F3 interspecific hybrid of mung bean.

Primer combination Forward primer (me) Reverse Primer (em) Band size (bp) TPL TAL DP (%)
me7em8 TGAGTCCAAACCGGACG GACTGCGTACGAATTCAC 100-2000 25 25 100
me7em9 TGAGTCCAAAC GGACG GACTGCGTACGAATTCAG 100-2000 25 25 100
me7em10 TGAGTCCAAACCGGACG GACTGCGTACGAATTCAT 100-2000 28 28 100
me9em9 TGAGTCCAAACCGGAGG GACTGCGTACGAATTCAG 100-1750 25 25 100
me9em10 TGAGTCCAAACCGGAGG GACTGCGTACGAATTCAT 100-1000 10 10 100
mel0em10 TGAGTCCAAACCGGAAA GACTGCGTACGAATTCAT 150-750 7 9 77.78
Total 120 122

Mean 20.00 20.33 96.29

Remark: TPL = Total polymorphic loci; TAL = Total amplified loci; DP = Degree of polymorphism.

2.2. Isolation and quantitation of genomic DNA

Total DNA was isolated from mung bean leaves using a
modified CTAB (hexadecyltrimethylammonium bromide)
as described in Dharajiya et al. (2017). NanoDrop (2000c
Spectrometer, Thermo Scientific) was used to quantify
DNA samples. Then, DNA were diluted using nuclease
free water (NFW) into working solution 25 (ng/pL).

2.3. Synteny analysis of mung bean-common bean and
RBIP marker design

The bacteria artificial chromosome (BAC) clone of Phase-
olus vulgaris PVGBa_61E16, the accession of genbank ID
GU215957.1 was retrieved from the National Center for
Biotechnology Information (NCBI). The LTR sequence
and Ty1/Copia retrotransposon and the motif of the se-
quence was detected and confirmed by LTR finder (Xu
and Wang 2007) and Conserved Domain Database (CDD)
of NCBI (Lu et al. 2020), respectively. The synteny anal-
ysis of the flanking genomic sequence of retrotransposon
between mung bean and common bean was conducted us-
ing a dotlet (Junier and Pagni 2000). The flanking se-
quence of 3' LTR retrotransposon from P. vulgaris was
subjected to Dotlet JS (https://dotlet.vital-it.ch) against
V. radiata genome sequence (LJIH01000004.1:c168862-
160236) to identify the synteny region. Multiple sequence
alignment (MSA) of syntenic region from the flanking
genomic sequence was generated using ClustalW em-
bedded in BioEdit. The RBIP primers were designed
from the highly conserved region to obtain PCR prod-
ucts with different size between P. vulgaris and V. ra-
diata using FastPCR (Kalendar et al. 2017). The flank-
ing region was amplified by PCR using primer pairs 5'-
ACCATTTAAGCCCAAGGTTCAACCTCA-3' and 5'-
GAGACTTTCCTCTGCATATGAAC-3'.

2.4. PCR amplification

The amplification of DNA was carried out using T100™
thermal cycler (Bio-Rad, USA). The PCR reaction of
RBIP and SRAP was consisted of 50 ng of gDNA, 0.2 mM
dNTPs, 0.2 pM primer, 1X GoTag® Green Master Mix
(Promega, USA), 1.25 U/pL GoTag® polymerase, and
added with NFW into final volume 12.5 pL. The ampli-
fication of RBIP condition consisted of pre-denaturation

145

at 95 °C for 2 min, 35 cycles of denaturation at 95 °C for
1 min, annealing at 60 °C for 1 min, with an extension
at 72 °C for 2 min, and the final extension at 72 °C for 10
min. The DNA amplification using IRAP marker was con-
ducted in accordance to Fatmawati et al. (2021). The PCR
condition of SRAP were conducted in accordance with Li
and Quiros (2001). In brief, pre-denaturation at 94 °C for 2
min, annealing at 35 °C for 1 min, and extension at 72 °C,
1 min are the first five cycles. In additional 35 cycles, the
annealing temperature was raised to 50 °C for 1 min, fol-
lowed by an 8-min extension at 72 °C. The SRAP primer
sequences are listed in Table 1 as described in Uzun et al.
(2009).

2.5. Data analysis

The amplified bands were scored as 1 if they were present
and 0 if they were not to generated binary data. NTSYS-
PC software was used to do the cluster analysis (Rohlf
2009). The binary data were subjected to genetic simi-
larity matrix using simple matching on the similarity of
quantitative data (SIMQUAL) program. The mean of the
unweighted pair group method with arithmetic average
(UPGMA) technique was used to create a dendrogram.
Number of distinct alleles (Na), number of effective al-
leles (Ne), expected heterozygosity (He), number of loci
with private allele (Pa), and percentage of polymorphic
loci (PPL) were used to compute genetic indices. The ge-
netic distance between mung bean genotypes was used to
perform principal coordinate analysis (PCoA). The analy-
sis of molecular variance (AMOVA) and PCoA were car-
ried out using the GenAIEx software version 6.5 (Peakall
and Smouse 2012).

3. Results and Discussion

3.1. RBIP marker design and genetic confirmation of F2
hybrids
An LTR retrotransposon was detected from BAC clone of
Phaseolus vulgaris (GU215957.1) using LTR Finder (Xu
and Wang 2007). The sequence length of this retrotranspo-
son was 4200 bp, and the lengths of its 5 and 3 LTRs were
320 and 317 bp, respectively. This retrotransposon shared
97.20% of LTR similarity and target site duplication was
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marked by CATTC at both the 5" and 3" end of LTR. This
LTR retrotransposon was classified as Ty1/Copia retro-
transposon based on Conserved Domain Database (CDD)
analysis (Figure 1). This Tyl/Copia sequence was made
up of GAG, Integrase, Reverse Transcriptase, and RNAse

Flanking sequence of Phaseolus vulgaris
retrotransposon in GU215957.1 accession
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Vigna radiata cultivar RIL59 scaffold 3,
LJIHO01000004.1:c168862-160236
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FIGURE 2 Dot plot analysis of Phaseolus vulgaris and Vigna radiata
genomic sequences synteny region that flanked at the 3' LTR of
Ty1/Copia retrotransposon.
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HI sequences with lengths of 215, 338, 743, and 401 bp,
respectively. The dot plot result revealed that the flanking
sequence of the Ty1/Copia retrotransposon in Phaseolus
vulgaris shared the conserved syntenic region with Vigna
radiata (Figure 2). Based on synteny analysis of unigene
sequences, mung bean and common bean was comparable
with their gene functions, and the linkage groups among
them are largely conserved (McClean et al. 2010). In ad-
dition, mung bean is closely linked to common bean which
separated from a common ancestor (Lavin et al. 2005; Ste-
fanovic et al. 2009).

The MSA of flanking genomic region was analyzed
using Bioedit and the primers were designed from highly
conserved syntenic region to obtain the PCR product with
different size from both plant species (Figure 3). The PCR
amplification from both of 'lokal malang’ (female parent)
and 'Lebat-3' (male parent) with RBIP primers generated
distinct amplicon size around 1300 bp and 900 bp, re-
spectively (Figure 4b). The heterozygote progenies can
be clearly recognized from the homozygote progenies be-
cause they inherit alleles from both parents (Figure 4b).
The homozygous progenies only had a single band that
was identical to the female parent, such as genotypes of
43, 49, and 50. In contrast, IRAP, a dominant marker, was
not unable to distinguish the heterozygotes (Figure 4a).

The successful hybridization of two parental lines re-
sulted in a novel genetic recombination in their progeny.
Genetic recombination determines population diversity
and generates unique allele combinations (Fernandes et al.
2018). Recombination rates consider to be different
among species, populations, individuals, sex, chromo-
somes, and intrachromosomal locations (Dreissig et al.
2019). The successful genetic recombination determines
by the successful hybridization and fertilization. How-
ever, the interspecific hybridization is relatively infre-
quent, produces low recombination exchanges, signifi-
cantly limiting crop breeding efficiency (Shen et al. 2021).
Therefore, comprehensive identification of progenies re-
sulting from interspecific hybridization should be carried
out using genetic markers. In this results, the RBIP marker
used in this study was confirmed and supported that the
progenies are genuine hybrids derived from interspecific
hybridization between mung bean and common bean that
has been validate by Fatmawati et al. (2021) using IRAP
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marker and the progeny had a distinct morphological char-
acter in seed size and seed coat color (Fatmawati et al.
2021; Fatmawati 2022).

3.2. SRAP marker analysis of F3 interspecific hybrid of
mung bean

In this study, we demonstrated the application of SRAP
marker to characterize genetic diversity of F3 mung bean
population. High level polymorphism was observed when
SRAP marker applied in mung bean genotyping. Six com-

bination SRAP primers has been successfully amplified
PCR products to characterize genetic diversity in all mung
bean genotypes. All primers produced 122 of total ampli-
fied loci out of which 120 loci were polymorphic (Table 1).
The amplicon sizes and degree of polymorphism were var-
ied from 100 to 2000 bp and 77.78% to 100.00%, respec-
tively. These results imply that all these SRAP primers
were highly effective for mung bean genotyping. The use
of molecular markers is essential, especially when assess-
ing the genetic diversity of a population produced via inter-
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FIGURE 4 DNA profile of F2 interspecific hybrids amplified from
using IRAP and RBIP. IRAP banding pattern in F2 interspecific hy-
brids (a), RBIP banding pattern in F2 interspecific hybrids (b). Red
arrow heads represent specific alleles from common bean [male
parent (M)] inherited in progenies. The white arrow heads repre-
sent the progenies that shared a particular amplicon with the fe-
male parent (F).

specific hybridization. Mung bean lacks a barier in which
to cross with closely related species (Pandiyan et al. 2020).
Furthermore, rigorous research should be carried out uti-
lizing molecular markers to determine genetic variety in
advanced genotypes. Thus, using SRAP marker, we con-
firmed that this F3 population of was genetically varied
and exhibited high degree of polymorphism.

3.3. Genetic diversity of F3 mung bean population

The values of Na and Ne ranged from 0.967 to 1.336 and
1.127 to 1.148, respectively (Table 2). When compared to
other populations, the F3.2 population has the most dis-
tinct alleles. The He value ranged from 0.089 to 0.117,
while the PPL value ranged from 45.08 to 63.11 percent.

The F3.2 population has the highest He and PPL values.
The Pa value for the entire population ranged from 2 to 14
bands. Both the F3.2 and F3.4 populations have a high Pa
value, with 13 and 14 bands, respectively. These findings
indicate that the genotypes in the F3.2 and F3.4 popula-
tions have a significant genetic diversity when compared
to other populations. This finding is corroborated by the
AMOVA, which shows that genetic variation is prevalent
within populations (Table 3). According to the AMOVA
data, there was 71% variance within the population and
29% variation among populations (Table 3). The variance
was calculated using 999 permutations. With a moderate
degree of genetic diversity, population variation is consid-
erably different (29%). This finding is confirmed by the
large number of total private alleles produced in all pop-
ulations (34), of which 13 and 14 private alleles occurred
in F3.2 (38.23%) and F3.4 (41.17%), respectively (Table
2). The selection of characteristics linked to yield compo-
nents and seed coat colors in F2 population of mung bean
may have resulted in high diversity within the population.

The F3.4 population presented remarkable genetic dif-
ferentiation in the number of private allele (Table 2). The
reason for the increased genetic diversity among geno-
types of the F3.4 population might be because it is free
of segregation distortion in F2 and its progenies inherit
the alleles from their male parent (common bean). The
private allele denotes that the allele exists solely in one
population. The F3.4 population comprised 14 private al-
leles compared to F3.1 and F3.3, which had 5 and 2 private
alleles, respectively, showing the considerable genetic di-
versity that occurred among the F3.4 genotypes. Private
allele data provide valuable information on the unique ge-
netic variety at specific loci, as well as identifying highly
diverse genotypes that might be used as parental lines in
plant breeding programs to enhance allele diversity in the
population (Salem and Sallam 2016). The allelic pattern
and genetic diversity indices were beneficial in determin-
ing genetic variation in each population. Even though the
three populations had distinct diversity, the F3.4 had the

TABLE 2 The average of various genetic factors in each mung bean population.

Population Na Ne He PPL (%) Pa
F3.1 0.967+0.088 1.146+0.025 0.091+0.014 45.08 5
F3.2 1.336+0.082 1.170+0.022 0.117+0.013 63.11 13
F3.3 1.016+0.089 1.127+0.019 0.089+0.012 48.36 2
F3.4 1.131+0.085 1.148+0.021 0.102+0.012 51.64 14
Mean 1.113+0.043 1.148+0.011 0.100+0.006 52.05 8.5

TABLE 3 The AMOVA analysis using 6 SRAP primer combinations of the genetic differentiation among and within four population of 64
mung bean genotypes.

Source df SS MS Est. Var % Var P-value
Among population 3 193.266 64.422 3.488 29% 0.001
Within population 60 516.438 8.607 8.607 71%

Total 63 709.703 12.096 100%

Remark: df = degree of freedom; SS = sum of square; MS = mean of square; Est. Var = estimated variance; % Var = percentage of variation.
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most genetic diversity. Understanding genetic variation in
the interspecific hybridization of mung bean breeding pro-
gram will help in identifying superior genotype for further
selection in advance generation.

3.4. Cluster analysis of F3 mung bean population

Understanding the genetic diversity of this population re-
quires the identification of F3 population structure. UP-
GMA clustering of simple matching similarity data from
all six marker combinations split 64 F3 genotypes into six
different groups (Figure 5). The similarity coefficient was
varied from 0.75 to 0.98. There were 39 individuals in

m iy
sy

— VI

s T
0.75 0.81

FIGURE 5 Dendrogram of 64 genotypes of mung bean in F3 popu-

lation based on SRAP markers which separated the genotypes into
6 clusters with the genetic similarity coefficient is 0.82.
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FIGURE 6 Principle coordinate analysis (PCoA) of 64 genotypes of
mung bean in F3 population based on SRAP markers.
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Cluster I. On the other hand, Clusters II, III, IV, V and VI
had 2 members, 2 members, 6 members, 16 members, and
1 member, respectively. This finding suggests that ISAP
is a rather good marker for identifying genetic diversity
in an interspecific hybrid F3 population. A PCoA biplot
analysis validated the UPGMA clustering result, which di-
vided the 64 mung bean genotypes into four groups (Fig-
ure 6). All 64 genotypes of F3 mung bean population
were divided into four quadrants. Quadrant I included the
genotypes of the F3.1 population. The predominance of
F3.2 and F3.3 genotypes were found in quadrant II. Sev-
eral genotypes of F3.2 and F3.4 populations were found
in quadrant III. The most of F3.4 populations were found
in quadrant IV. This result implies that the F3.4 popula-
tion was distinguished from other populations, which is
corroborated by the UPGMA dendrogram result (Figure
5). The findings of the dendrogram analysis (UPGMA)
agreed with the results of the PCoA biplot (Figures 5 and
6). This result implies that the F3 population structure
that has been selected from F2 generation had a distinct
genetic background which supported by the phenotypic
variation of seed coat color and yield traits (Fatmawati
2022). Furthermore, knowing population structure is criti-
cal for identifying marker-associated characteristics using
genome-wide association studies (GWAS) (Eltaher et al.
2018). As a result, before doing GWAS to find a proper
correlation between a characteristic of interest and markers
that might lead to the identification of underlying genes,
the first stage is to evaluate the population structure.

4. Conclusions

In conclusion, the RBIP marker can be used to differentiate
the heterozygote progenies in F2 population of interspe-
cific hybrids. The F3.4 genotype population had the high-
est number of private alleles, polymorphic loci percentage,
and effective alleles. Despite their tremendous selection,
the elite genotypes were genetically diverse. This mung
bean population structure and genetic diversity informa-
tion is critical for future genetic studies such as GWAS
and marker-assisted selection studies for high yield poten-
tial and nutritional value of mung bean.
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