16s rRNA Sequence Analysis and Ammonium Excretion Ability of Nitrogen Fixing Bacteria Isolated from Mineral Acid Soil

Hartono1,2, Jaka Widada3*, and Siti Kabirun3

1. Study Program of Biotechnology, Graduate School of Gadjah Mada University, Yogyakarta, Indonesia
2. Department of Biology, Faculty of Science, State University of Makassar, Indonesia
3. Faculty of Agriculture, Gadjah Mada University, Yogyakarta, Indonesia

Abstract

Nitrogen fixing bacteria defined as bacteria which is capable to transform free nitrogen molecules into ammonium (PCR). Nitrogenase activity of these selected isolates was measured using Acetylene Reduction Assay (ARA). The ability of these selected isolates in ammonium excretion was qualitatively and quantitatively measured using Nessler reagent and spectrophotometry method respectively. Taxonomic position of the selected bacteria were determined based on their 16S rRNA sequence analysis. Genetic diversity analysis of these 15 isolates of nitrogen fixing bacteria yield eight selected bacteria for subsequent analysis. Sequence of nifH gene from all of these selected bacteria were successfully amplified. Nitrogenase assay of these selected bacteria revealed 6 isolates with high nitrogen fixation capacity namely GMA3, GMA5, GMA6, GMA9, GMA12 AND GMA13. Ammonium excretion analysis revealed 4 isolates which have remarkable ability of producing high level of ammonium namely GMA1, GMA3, GMA6, and GMA9. The 16S rRNA sequence analysis shown that isolates GMA3, GMA5, GMA11 and GMA12 had a close relationship with Brevibacillus formosus strain DSM 9885T, Flexibacter canadensis strain ISSDS-428, Rhizobium tropici strain rif 200849, and Azotobacter tropicalis strain RBS. Respectively, isolate GMA1 and GMA13 had a close relationship with Stenotrophomonas sp. Strain MFC-C, while isolate GMA6 and GMA9 had a close relationship to Azotobacter vinelandii strain ISSDS-428.

Key words : nitrogen fixing bacteria, ammonium excretion, identification

*Corresponding author : Jaka Widada, Department of Agriculture Microbiology, Faculty of Agriculture, Gadjah Mada University, Yogyakarta, 55281 email : jwidada@gmail.com
ammonium accumulation as the result of nitrogen fixation will prohibit both synthesis and activity of nitrogenase enzyme complex in the cell, resulted the nitrogen fixation to stop (Colnaghi et al., 1997).

Some differences of nitrogen-fixing regulation mechanism found in several nitrogen-fixing bacteria strains, in which the ammonium produced by nitrogen fixation will be excreted via a simple diffusion mechanism (Kleiner, 1982). This fact reason in two important consequences in the application of nitrogen-fixing bacteria as biofertilizer, which are 1) Ammonium excretion caused of the non-cumulative ammonium within the cell so the nitrogen fixation will occurred continously, 2) Ammonium that excreted from the bacteria is possibly utilized directly by plant (Colnaghi et al., 1997). This research was aimed to obtain and identified nitrogen-fixing bacteria that are capable to excrete a high concentration of ammonium.

Materials and Methods
Nitrogen fixing bacteria isolates
Azotobacter vinelandii DSM 2289, Azospirillum brasilense DSM 1224 and 15 nitrogen fixing bacteria isolates encoded as GMA1, GMA2, GMA3, GMA41, GMA42, GMA5, GMA6, GMA7, GMA8, GMA9, GMA92, GMA10, GMA11, GMA12, and GMA13 used in this research, obtained from collection of Soil Microbiology Laboratorium Gadjah Mada University.

16S rRNA gene amplification
Isolated bacterial DNA (50 ng/ml) were amplified using forward primer 27f (5’-AGAGTTTTGATC[A/C]TGGCTCAG-3’) and reverse primer 1492r (5’-TACGG[A/T/C]TACCTTGTTACGACTT-3’) with concentration of each is 25 pmol/ml. PCR cycle used are as following : 95°C for 1 min, 30 cycles (95°C for 1 min, 50°C for 1 min, and 72°C for 1,5 min) and 72°C for 10 min to lengthen the final products. Electrophore-
sis was performed to PCR product in 0,8% agarose gel, with 100 Voltage for 30 min.

Amplified Ribosomal DNA Restriction Analysis (ARDRA)
Result of 16S rRNA gene purification with DNA gel Kit Spin Prep™ were then separated with HaeIII enzyme. DNA phragmen produced were electrophorised in 2% agarose gel with 100 voltage for 25 min using electrophoresis buffer solution TAE 0,5X. Differences of DNA polimorphism pattern were analysed using NTSYSpc-2.02i software with Unweight Pair Group with Mathematical Average (UPGMA method).

Gen nifH amplification
Isolated DNA were amplified using nifH-univ for A site (5’-GCIWTITAYGGNAARGGNGG-3’) primer and nifH-univ for rev-site (5’-GCRTAIAABNGCCATCATYTC-3’) primer with 25 pmol/ml concentration for each. PCR cycle occured in early denaturation condition in temperature of 95°C for 5 min and followed by 35 cycles consisting of denaturation (94°C for 30 min, primary attachment (56°C for 30 min) and polimerisation (72°C for 1 min). After the final cycle, polymerisation continued undergoing in temperature of 72°C for 10 min.

Nitrogenase activity test
Test of nitrogenase activity was undertaken with Acetylene Reduction Assay (ARA) method (Turner and Gibson, 1980). Bacterial isolates were grown in biphasic modified liquid mannitol media and incubated for 3 days. Bacterial culture were then centrifuged to separate cell pellets from the medium. The cell pellets produced were put into venoject and added with 0,5 mL of acetylene to undergo incubation for 24 h. When the incubation had finished, gas inside the venoject was analysed with gas chromatography.
Qualitative ammonium excretion capacity test

Bacterial isolates were grown in 30 mL Burk’s medium. Bacterial culture were then incubated in room temperature for 48 h and shaken using rotary shaker. After incubation time ended, the sample were taken and centrifuged at 12,000 rpm for 10 min (Shanmugam and Valentine, 1975). 5 mL of supernatant produced was taken and the pH value was set to 11 by adding NaOH. After that, medium supernatant were added with 0.11 mL EDTA, 0.11 mL sodium potassium tartrate and 0.22 mL Nessler reagent and homogenized. Reaction tube were incubated for 20-30 minutes at 25 ± 5°C then observed for the color change.

Quantitative ammonium excretion capacity test

Sampling were performed periodically every 8 h, started at the early incubation time to undergo centrifugation at 12000 rpm for 10 min (Shanmugam and Valentine, 1975). The supernatant produced from centrifugation were put into new tube and pH value was set to 11 by adding NaOH. Supernatant added with 0.07 mL EDTA, 0.07 mL sodium potassium tartrate, and 0.13 mL Nessler reagent was homogenized and incubated at temperature of 25 ± 5°C for 20-30 min. About 2.5 mL sample was taken and the absorbance was determined using spectrophotometer at 435 nm wave length (Yuen and Pollard, 1952).

Nucleotide bases sequence analysis and phylogenetic relationship

Alignment nucleotide sequence reading result was performed using align two sequence of Basic Local Alignment Search Tool (BLAST) algorithm programme. Unsuitable nucleotide sequences were corrected manually utilizing Genetyx programme based on electrophoregram graph. Intact 16S rRNA gene sequence obtained from selected isolate was explored for its homologue with 16S rRNA bacterial gene provided in Genebank database using BLAST programme. Multiple alignment and arrangement of phylogenetic tree of selected bacterial isolates’ 16S rRNA gene sequence and bacterial control’s 16S rRNA gene sequence from genebank were performed by utilizing CLC Free workbench programme based on unweighted pair-group method using arithmetic averages (UPGMA) values. Phylogenetic tree consistency was determined by using bootstrap analysis with 1000 times resampling.

Results and Discussion

Genetic diversity of utilized nitrogen fixing bacteria isolates

Amplification of 16S rRNA gene from all analyzed isolates of nitrogen-fixing bacteria produced one DNA ribbon with molecule weight of about 1500 bp (result is not shown). The results of 16S rRNA gene amplification were then separated by using HaeIII restriction enzyme. Polymorphism pattern as the result of 16S rRNA gene cleavage is shown in Figure 1.

![Figure 1. Polymorphism pattern of 16S-rRNA gene of nitrogen fixing bacteria isolates after cleavage using HaeIII restriction enzymes.](image)

According to the given results of ARDRA in Figure 1, 16S rRNA gene cleavage from analyzed bacterial isolates shows seven different patterns of DNA polymorphism. Each DNA polymorphism pattern
consists of 4-6 DNA band with molecule weight varies from 80 bp to 600 bp. Cruz et al. (2001) reported that 16S rRNA gene cleavage using Haell enzymes on 38 nitrogen fixing bacteria isolated from Musa spp dan Ananas comosus (L) Merril resulted in 10 different patterns of DNA polymorphism.

DNA polymorphism pattern derived from ARDRA method was not only used to differentiate bacterial in species level and higher taxonomy (Reinhardt et al., 2008) but also to define the familial relationship between analyzed bacterial isolates (Cruz et al., 2001). Familial relationship of analyzed bacterial isolates in this research was performed by constructing phylogenetic tree in dendogram form (Figure 2).

In contrast, bacterial isolates of GMA3, GMA5, GMA11, and GMA12 showed a low 16S rRNA gene polymorphism pattern with similarity coefficient less than 1 compared to other isolates. These bacterial isolates were supposed as genetically different isolates compared to others and were selected for the next test.

Bacterial isolates group that consisted of those with the same ARDRA pattern and high similarity coefficient were supposed as genetically similar isolates and one of them was selected for the next test. In this study we chose GMA1, GMA6, GMA 9 and GMA13 isolates because they had highest nitrogen-fixing capacity compared to other isolates based on previous research.

Growth Pattern of Selected Nitrogen-Fixing Bacterial Isolates in Free Nitrogen Medium

The growth pattern of selected nitrogen-fixing bacterial isolates in figure 3 shows most of bacterial isolates had undergone adaptation phase for 6 hours as shown in GMA3, GMA5, GMA6, GMA9, GMA11 and GMA12 isolates. Generally, all selected bacterial isolates enter the exponential growth phase 9 hours after incubation, except in GMA1 and GMA13 isolates. Some of bacterial isolates in this study had different growth time in exponential phase. GMA5, GMA6 and GMA12 grew exponentially until the end of observation time. GMA3,
GMA9 and GMA13 grew for 18 hours in exponential phase whereas UGM13 grew for 15 hours. GMA11 underwent stationary phase 21 hours after incubation, whereas GMA3, GMA9 and GMA13 passed through that phase after 24 h and continued until the observation period ended.

Detection of Fe protein encoding nifH gene *(Dinitrogenase Reductase)*

Detection of nifH gene in nitrogen-fixing bacterial isolates was conducted by using PCR technique with primary specific nifH-univ (for A-site and for rev-site). This primer was designed to amplify nifH gene widely in nitrogen-fixing bacteria (Burgmann, 2003). The result of nifH gene amplification in selected nitrogen-fixing bacteria isolates are shown in Figure 4.

![Figure 4. Amplification result of nifH gene in selected nitrogen-fixing bacteria isolates. M: Marker 1 kb DNA Ladder, 1: GMA1, 2: GMA3, 3: GMA5, 4: GMA6, 5: GMA9, 6: GMA11, 7: GMA12, 8: GMA13, 9: Positive control (Azotobacter vinelandii DSM 2289)](image)

According to Figure 4, all selected bacterial isolates had nifH gene with molecular weight about 400 bp. This result was relevant with Burgmann (2003) statement that amplification of nifH gene with specific nifH-univ primer (for A-site dan for rev-site) would produce PCR products with molecular weight about 469 bp. This result also approved that genetically all selected bacterial isolates were potential to fixate free nitrogen.

Nitrogenase activity analysis using acetylene reduction assay (ARA) method

Nitrogen-fixing activity by nitrogenase complex in selected bacterial isolates is shown in Figure 5.

Selected bacterial isolates showed different nitrogenase activities (Figure 5). GMA3 isolate had highest nitrogenase activity of 4.60 mmol C₂H₄ (g/dry weight cell/h). GMA13 isolates had the second highest nitrogenase activity of 3.15 mmol C₂H₄ (g/dry weight cell/h). Nitrogenase activities of both isolates were higher than nitrogenase activities of positive control Azotobacter vinelandii DSM 2289 that was 1.16 mmol C₂H₄ (g/dry weight cell/h). Nitrogenase activities in GMA5, GMA6, GMA9 and GMA12 isolates were in the range of 0.82 mmol C₂H₄ (g/dry weight cell/h) to 2.50 mmol C₂H₄ (g/dry weight cell/h). GMA11 and GMA1 isolates had the lowest activities, 0.04 mmol C₂H₄ (g/dry weight cell/h) and 0.17 mmol C₂H₄ (g/dry weight cell/h).

Some of previous research publications reported their success in isolation of three nitrogen-fixing bacteria with highest nitrogenase activities as high as 187 to 387 nmol C₂H₄ (mg protein)⁻¹.h⁻¹ (Kim et al., 2005). Molecular identification showed that the three isolates were Azospirillum brasilense, Azospirillum lipoferum, and Enterobacter sp.
Qualitative test of ammonium excretion capacity

According to the result shown in Table 1, we notice that strong positive reaction indicated with a change of medium supernatant color into reddish brown after undergoing reaction with Nessler reagent occur in GMA1, GMA3, GMA6, and GMA9 isolates. This result showed the existence of ammonium in high concentration in the growth medium of those bacterial isolates. No color change noticed in supernatant from growth medium of GMA11, GMA12 and GMA13 isolates showed that there was no ammonium detected in those isolates culture medium.

<table>
<thead>
<tr>
<th>No</th>
<th>Isolates</th>
<th>Color Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GMA1</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>GMA3</td>
<td>+ ++</td>
</tr>
<tr>
<td>3</td>
<td>GMA5</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>GMA6</td>
<td>+ ++</td>
</tr>
<tr>
<td>5</td>
<td>GMA9</td>
<td>+ ++</td>
</tr>
<tr>
<td>6</td>
<td>GMA11</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>GMA12</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>GMA13</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Azotobacter vinelandii DSM 2289</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Azospirillum brasilense DSM 1224</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: (+++) indicates positive reaction, (+) intermediate positive reaction, (+) weak positive reaction, and (-) negative reaction

Quantitative ammonium excretion ability

Figure 6 shows that ammonium excretion occured in all bacterial isolates at different concentration. The highest ammonium concentration was detected in 4 culture medium; GMA1, GMA3, GMA6 and GMA9. The highest ammonium concentration was detected in culture medium of GMA6 isolate as much as 1107,692 µMol. The second highest ammonium concentration was found in culture medium of GMA3 as much as 688,718 µMol, followed by GMA9 with 454,103 µMol, and GMA1 with 391,538 µMol. Ammonium in culture medium of GMA5, GMA11, GMA12, and GMA13 isolates were low, only in a range concentration from 0,001 µMol to 26,154 µMol. The ammonium concentration in culture medium of positive control Azotobacter vinelandii DSM 2289 was 242,821 µMol and Azospirillum brasilense DSM 1224 was 129,744 µMol.

Some previous studies reported that they could perform ammonium excretion capacity test in some strain of wild type nitrogen-fixing bacteria such as Azotobacter vinelandii in concentration about 260,251 µM (Gordon et al., 1983).

Ammonium excretion in all selected bacterial isolates started at 6 h after incubation. These could be compared to bacterial growth graph in Figure 3 that shows ammonium started being excreted at exponential growth phase and the excretion continued until stationary phase. This condition was consistent with previous study showing that ammonium excretion in A. Chrococcum, A. vinelandii, and Klebsiella pneumoniae occurred when the bacteria were in late exponential growth phase before entering the stationary phase when the growth started to end (Narula et al., 1981; Bali et al., 1992). These could be due to high nitrogen fixation activity in order to fulfill cell’s needs of nitrogen for fast growing. Another factor probably caused this condition was the low oxygen concentration at the end of stationary phase due to highly oxygen consuming bacterial growth activity in aerobic condition.
After 32 h of incubation, ammonium concentration in culture medium of bacterial isolates relatively remain stable and also decline, showing that ammonium excretion started to decrease. Ammonium excretion probably ended due to some factors; 1) Decreasing of nutrition such as carbon resources that the isolates need for their growth, 2) Accumulation of nitrogenase inhibitors such as ammonium, and 3) Increasing of medium base (pH) value, (Bali et al, 1992).

Identification of Selected Nitrogen-fixing Bacterial Isolates

Based on dendogram affiliation of phylogenetic tree (Figure 8), we could notice that GMA1 and GMA13 isolates had the highest homology (99%) with Stenotrophomonas sp. strain MFC-C.

Stenotrophomonas sp is one of commonly found in soil bacteria, especially in rhizosper plants area. Reinhardt et al. (2008) reported that Stenotrophomonas had the ability to fixate nitrogen that was approved by using ARA test and detection of nifH gene. Liba et al. (2006) stated that the ability to fixate free nitrogen from atmosphere was one of newly found characteristic of Stenotrophomonas sp that had not been reported yet in previous studies. The ammonium excretion capacity of this bacteria has not been reported yet.

GMA3 isolates has the highest homology (99%) with Brevibacillus formosus strain DSM 9885T bacteria. This strain was published for the first time by Shida et al. (1995) as Bacillus formosus. It then reclassifictin as Brevibacillus formosus with the same characteristic as reported before, with some additional molecular data (Shida et al., 1996). Some species of genus Bacillus such as Bacillus pumilus (Lie et al., 2008) and many more species from genus Paenibacillus such as Paenibacillus foosythiae (Ma and Chen, 2008) were known to have nitrogen-fixing capacity but none of them were reported to have the ability to excrete ammonium.

GMA5 isolates has the highest homology (97%) with Flexibacter canadensis strain IFO 1513 bacteria. This strain is a soil living bacteria. There has not been any report about the ability to fixate nitrogen and excrete ammonium of this strain.

GMA6 and GMA9 isolates have the highest homology (99%) with Azotobacter vinelandii strain ISSDS-428 bacteria, and GMA12 isolates has the highest homology (99%) with Azotobacter tropicalis strain RBS bacteria. The nitrogen fixing capacity in aerobic condition is one of main characteristic of genus Azotobacter (Brenner et al., 2005). Previous study reported that Azotobacter vinelandii strain wild type isolates could excrete ammonium in concentration about 200 µM (Bali et al., 1992) and 260,251 µM (Gordon et al., 1983).

GMA11 isolates has the highest homology (99%) with Rhizobium tropici strain rif 200849 bacteria. Rhizobium tropici is one of nitrogen-fixing bacteria that has symbiotic relationship with legume plant through formation of nodule in plant roots. Rhizobium was known to have the ammonium excretion ability for its host plants through peribacteroid membrane (Day et al., 2001).

Ammonium excretion analysis revealed 4 isolates which has remarkable ability of producing high level of ammonium namely...
GMA1, GMA3, GMA6 and GMA9. The 16S rRNA sequence analysis shown that isolate GMA3, GMA5, GMA11 and GMA12 had a closed relation with Brevibacillus formosus strain DSM 9885T, Flexibacter canadensis strain ISSDS-428, Rhizobium tropici strain rif 200849 and Azotobacter tropicalis strain RBS respectively, isolate GMA1 and GMA13 had a close relation with Sthenotropphomonas sp. Strain MFC-C, while isolate GMA6 and GMA9 had a close relation with Azotobacter vinelandii strain ISSDS-428.

References

