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Increased serial levels of platelet-derived growth factor using hypoxic
mesenchymal stem cell-conditioned medium to promote closure acceler-
ation in a full-thickness wound
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ABSTRACT The healing process of a full-thickness wound involves a complex cascade of cellular responses to reverse
skin integrity formation. These processes require growth factors, particularly platelet-derived growth factor (PDGF).
Conversely, hypoxic mesenchymal stem-cell-conditioned medium (HMSC-CM)-contained growth factors notably contribute
to acceleration of wound healing. This study aims to investigate the role of HMSC-CM in controlling the serial levels of
PDGF associated with accelerated wound closure in full-thickness wounds. Twenty male Wistar rats with full-thickness
wounds were developed as animal models. The animals were randomly assigned to four groups, comprising two treatment
groups (treated using HMSC-CM at a high dose as P1 and at a low dose as P2), a control group (administration of base gel),
and sham group (healthy group). PDGF levels were examined using an enzyme-linked immunosorbent assay. Using Image)
software, wound closure percentages were determined photographically. The study showed that there was a significant
increase in PDGF levels on days 3 and 6 after HMSC-CM treatment, followed by a decrease in PDGF levels on day 9. In line
with these findings, wound closure percentage also increased significantly on days 6 and 9. In the rat model, HMSC-CM
administration may promote acceleration of wound closure by increasing serial PDGF levels in the full-thickness wound.
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1. Introduction countries (Okur et al. 2020). Furthermore, one of the
crucial phases in wound healing is the induction of fi-
broblast activation into myofibroblast to produce collagen
synthesis associated with wound closure (Herrera et al.

The full-thickness wound is the loss of the cutaneous
layer, which extends to the subcutaneous layer caused by
several factors such as mechanical, chemical, biological, 2018). These processes require paracrine factors essen-
and thermal injuries (Hu et al. 2018). The healing pro- tially transforming growth factor-p (TGF-p) and platelet-
cess of a ful!—thic!(ness cutaneous involves a highly or- derived growth factor (PDGF) (Hu et al. 2014). A re-
ganized physiological cascade of cellular responses to re- cent study revealed that mesenchymal stem cells (MSC)
store skin integrity formation (Bartau.la-Brewk 2017; Riis under hypoxic conditions can release a massive number
et al. 2017). The prolonged duration of wound heal- of growth factors including TGF- and PDGF into a cul-

ing may increase the risk of chronic wound development, ture medium known as the hypoxic conditioned medium of
which contributes to morbidity, particularly in developed
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MSC (HMSC) that highly contribute to an acceleration of
wound healing (Chen et al. 2014). PDGF enhances wound
closure through the PI3K/AKT/eNOS signaling pathway
(Wu et al. 2019). Furthermore, PDGF can block fibroblast
into myofibroblasts associated with decreasing scar for-
mation in wound closure (Mulholland 2020). Addition-
ally, TGF-f stimulates wound contraction through induc-
tion of smooth muscle alpha-actin expression and accel-
erates re-epithelialization thus contributing to wound clo-
sure (Ramirez et al. 2014). This indicated that HMSC po-
tentially induces the acceleration of wound closure in the
full-thickness wound through a release of PDGF; however,
the association of PDGF levels to wound closure follow-
ing HMSC administration needs further explanation (Putra
et al. 2019).

MSCs are derived from stromal cells with plastic-
adherent and multipotent differentiation capability that can
express various markers, including CD90, CD105, CD73,
CD44, and CD?29, and lack of other surface marker ex-
pressions such as CD45, CD34, CD14, CD11b, CD79a,
CD19, and human leukocyte antigen class II (Dominici
et al. 2006; Lv et al. 2014). HMSC-CM is a conditioned
medium produced by MSC under hypoxic conditions con-
taining tons of various anti-inflammatory cytokines and
growth factors such as interleukin 10 (IL-10), PDGF, and
TGF-( that have beneficial therapeutic effects in the opti-
mum wound healing (Burlacu et al. 2013; Li et al. 2017,
Mubhar et al. 2019). Previous studies reported that PDGF
act as functional paracrine and autocrine factors, which ac-
celerate the healing process by promoting myofibroblast
activation to synthesize collagen associated with wound
closure (Chen et al. 2008; Riis et al. 2017). Conversely,
PDGEF is also a potent growth factor produced by vari-
ous cells including platelets, fibroblasts, macrophages, en-
dothelial cells, and keratinocytes, which contribute to tis-
sue repair (Park and Kim 2017). PDGF is a responsible
molecule in initiating wound healing by regulating cell
growth a division as well as angiogenesis (Dehkordi et al.
2019).

A previous study reported that HMSC-CM contain
substantial growth factors particularly PDGF that improve
refractory wound healing by regulating fibroblast (Chen
et al. 2014; Saheli et al. 2020). The beneficial effects of
HMSC-CM in wound healing acceleration are designed
by an ability of IL-10 contained in HMSC-CM to con-
trol inflammation; additionally, contained growth fac-
tors, particularly PDGF, are also stimulating cell prolif-
eration to accelerate wound closure (Muhar et al. 2019;
Noronha et al. 2019). Another study also reports that
the HMSC-CM can enhance wound healing through an
increase in vascular endothelial growth factor (VEGF)
and macrophage recruitment to wound sites triggering
wound closure acceleration (Chen et al. 2014). Con-
versely, PDGF is also a potent growth factor produced by
various cells including platelets and macrophages, which
contributes as chemoattracting molecules for leucocytes
migration to initiate inflammation (Park and Kim 2017).
These facts are supported by another study that reports
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that the PDGF is one of the responsible agents in initi-
ating early inflammation besides wound healing acceler-
ation that depends on its release time (Landén et al. 2016).
Thus, the serial analyses of PDGF released by HMSC-CM
in the healing phase associated with wound closure require
more exploration. In this study, we investigated the role
of HMSC-CM in controlling the serial level of PDGF as-
sociated with wound closure in the full-thickness wound
animal model.

2. Materials and Methods

2.1. Ratumbilical cord MSC isolation and characteriza-
tion

The procedures in this study were approved by the In-
stitutional Ethics Review Board of UNISSULA Univer-
sity, Semarang. The isolation of MSC from an umbil-
ical cord (UC-MSC) of 19 days pregnancy of female
rat was performed using a previously described method
with modification (Hamra et al. 2021). Briefly, the um-
bilical cord was mechanically dissected and cultured in
Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-
Aldrich, St. Louis, MO, USA) contained 10% fetal bovine
serum (Sigma-Aldrich, St. Louis, MO, USA), 100 IU/ml
penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO,
USA) under normoxic condition. The cultured cells at pas-
sage 5 (P5) and under 80% confluence were applied for the
next experiment.

The cultured cells were subjected to flow cytome-
try analysis to confirm MSC phenotypic characteristics.
Briefly, the cultured cells were labeled with rat MSC anti-
gens CD44, CD90, CD105, and their isotype controls
(BD Bioscience, USA) and analyzed using BD accuri C6
plus. Furthermore, UC-MSC were cultured in the DMEM
(GIBCO, USA) supplemented with 0.05 pM ascorbate-2-
phosphate, 100 nM dexamethasone (Sigma-Aldrich, St.
Louis, MO, USA), 10 mM b-glycerophosphate (Sigma-
Aldrich, St. Louis, MO, USA), 1% antibiotic/antimycotic,
and 10% fetal bovine serum (Gibco, USA) to validate the
differentiation capacity of a cultured cell into an osteo-
cyte. The osteogenic medium was replaced at a 3-day
interval for 21 days. Prior to Alizarin red staining, cells
were washed in phosphate-buffered saline and fixed in
95% methanol for 10 min. Alizarin Red S solution 2%
was added for 5 min and then rinsed with water and imaged
under an epifluorescence microscope to visualize the Ca?*
deposits. Calcium deposition of the differentiated cell was
visualized as red bright color after Alizarin red staining.

2.2. Hypoxic preconditioned medium MSC preparation

UC-MSC cultured in serum-free complete medium were
incubated under hypoxia condition (5% O;) for 24 h.
The hypoxia-preconditioned medium was centrifuged at
2000 rpm at 8 °C temperature for 20 min and passed
through a 0.22 pm filter membrane (Corning, USA) to re-
move the remaining cell debris. The cytokine profile of
IL-17A, INF-y, and IL-6 in HMSC-CM was measured us-
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ing a cytometric-based assay (BD Biosciences, USA). The
concentrations of IL-10, TGF-f3, and PDGF in HMSC-CM
were also measured using enzyme-linked immunosorbent
assay (ELISA) kits (R&D Systems, USA). Colorimetric
absorbance was recorded at a wavelength of 450 nm. The
HMSC-CM was kept at —80 °C temperature until the treat-
ment.

2.3. Animal model and treatment

Twenty healthy adult male Wistar rats weighing 200—
250 g were applied in this study. All the procedures
and protocols were approved by the Animal Experiment
Ethics Committee of the UNISSULA, Indonesia. The full-
thickness cutaneous wound rat model was developed as
described in a previous study (Hamra et al. 2021). Briefly,
the rats were anesthetized via isoflurane inhalation, and
the dorsal hairs were shaved off and sterilized using 10%
of povidone-iodine solution. The full-thickness wound
was created using a 6 mm sterile biopsy punch on the dor-
sal skin. They were randomly divided into four groups,
namely, sham group (control untreated), control group
(treated by bases gel), and two treatment groups (treated by
200 pL of HMSC-CM gel as a high dose (P1) and by 400
pL of HMSC-CM gel as a low dose (P2). The HMSC-CM
gel was produced by mixing 100 mg of sterilized water-
based gels with HMSC-CM.

2.4. PDGEF level analysis

Blood samples were collected from the orbital sinus vein
using a hematocrit tube on days 3, 6, and 9 after treatment

100 pm
(a)

CcDh?

(c)

(b)

and centrifuged at 2000 rpm for 10 min. The serum was
collected and stored at —80 °C temperature. The blood
PDGEF concentration was analyzed using ELISA on the ba-
sis of manufacture protocol (FineTest, Wuhan, China) at a
450 nm wavelength.

2.5. Statistical analysis

Quantitative data are shown as the mean + the standard er-
ror of the mean for at least three independent experiments.
Statistical differences were determined using a one-way
analysis of variance followed by the Duncan post hoc test.
Significant differences were considered at p <0.05.

3. Results and Discussion

3.1. MSC isolation and characteristic

The MSC showed plastic adherence capacity and fibrob-
last or spindle-like shape (Figure 1a). Moreover, MSC
exhibits differentiation capacity into osteocyte clones pre-
sented as a bright color on Alizarin red staining (Figure
1b). The immunophenotypical analysis of surface mark-
ers MSC showed that they expressed CD44, CD90, and
CD105 (Figure 1c). To induce HMSC-CM, the MSC was
cultured under hypoxia condition with 5% O, for 24 h.
Under flow cytometry and ELISA analysis, we found sev-
eral paracrine factors contained in HMSC-CM, including
IL-17A, TNF-q, IL-6, IL-10, TGF-f, and PDGF (Figure
2).

90 CD105

FIGURE 1 (a) MSC characterization and differentiation. The black arrow presented the fibroblast-like cells (magnification 100x, scale bar
100 pm). (b) MSC differentiation. The red bright color was marked by the black arrow in a response to the calcium deposition in osteocyte-
differentiated MSC via staining by Alizarin red (magnification 40x, scale bar 50 pm). (c) The marker of MSC. Clones MSC positively expressed

CD73(99.2%), CD90(96.7%), and CD105 (67,1%).
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FIGURE 2 Levels of cytokine in HMSC-CM. The cytokine concen-
trations were determined in 24 h culture supernatants under (a)
flow cytometry and (d) ELISA. Data are presented as mean + SD. n
= 3 for each group.

3.2. HMSC-CM enhance wound healing by increasing
PDGF concentration

To investigate the roles of HMSC-CM in wound healing,
two different doses of HMSC-CM were administered into
the full-thickness cutaneous wound rats model 1 h post
skin excision and the wound closure improvement was
assessed on days 3, 6, and 9 posttreatment. Our study
showed that the rat treated by HMSC-CM 400 pL showed
significantly increased PDGF levels on days 3 and 6 in
both groups (P1: 251.8 + 20.4 pg/mL; P2: 291.4 + 28.21
pg/mL; and P1: 302.2 £ 15.93 pg/mL, P2: 307.6 £+ 32.56
pg/mL, respectively), followed by a significant decrease
of PDGF levels on day 9 after HMSC-CM treatment (P1:
282.5+20.83 pg/mL; P2: 239.8 + 23.14 pg/mL). (p <0.05;
Figure 3).

3.3. HMSC-CM improved wound closure

To examine the wound closure improvement, we measure
the wound diameter on days 3, 6, and 9 after the HMSC
administration. Our study showed that rats treated by
HMSC-CM promote wound closure acceleration on days
6 and 9. There was a decrease in the area of the wound
on days 6 and 9 after HMSC-CM administration. (P1:
2613.25 + 203.2 mm?; P2: 2367.25 + 164 mm?; and P1:
831.75 + 83.1 mm?; P2: 643.5 + 95.4 mm?, respectively)
(Figures 4 and 5).

3.4. Discussion

Wound healing processes require a well-integrated of nu-
merous molecular and physiological cascades that are reg-
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FIGURE 3 The increase in PDGF level on days 3 and 6 followed the
decrease in PDGF level on day 9. Significant differences (p <0.05)
are marked with asterisks.
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FIGURE 4 Wound closure improvement on days 6 and 9. Significant
differences (p <0.05) are marked with asterisks.
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FIGURE 5 Photographically recorded wound closure improvement
on days 3, 6, and 9. (a) There was no wound closure improvement
in all groups. (b) The wounds in P1 and P2 at day 6 were slightly
smaller than in control. (c) P1 and P2 showed better wound closure
improvement than control.

ulated by cytokines, chemokines, and growth factors (Rid-
iandries et al. 2018). The one crucial phase in wound heal-
ing is the collagen synthesis produced by activated fibrob-
last that is associated with the wound closure acceleration
(Desjardins-Park et al. 2018). Under controlled inflam-
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mation, the macrophage-secreted PDGF actively stimu-
lates fibroblast to produce collagen leading to wound clo-
sure (Zhang et al. 2010). Previous studies reported that
MSC-CM-contained growth factors including PDGF sig-
nificantly enhanced cell proliferation and regulate inflam-
matory niece, which affect the quality of skin regeneration
(Mehanna et al. 2015; Desjardins-Park et al. 2018; Dar-
lan et al. 2021). Conversely, PDGF released by platelets
also has a role in attracting leucocyte migration to initiate
inflammatory processes (Phipps et al. 2012; Xiang et al.
2019). Thus, investigating the role of PDGF regulated us-
ing HMSC-CM in accelerating wound closure on the basis
of the time-dependent serial of wound healing phases is a
crucial point in wound healing processes. We used the full-
thickness animal model to explore the serial level of PDGF
in inflammation to the proliferation phase as described by
a previous study (Mehanna et al. 2015).

Our study presented the fact that HMSC-CM can
accelerate wound closure by increasing serial levels of
PDGEF, starting from days 3 to 6 after HMSC-CM treat-
ment. However, the increase of PDGF level at day 3 is
not yet correlated with the wound closure acceleration.
We supposed that the increase of PDGF on day 3 in this
case is not able yet to promote the shift of inflamma-
tion to the proliferation stage that indicated by there was
no improvement in the wound closure diameter. The in-
crease of PDGF was suggested as an attractant molecule
for other inflammatory cells to initiate the inflammation
process (Park and Kim 2017; Putra et al. 2019). Con-
versely, the increase of PDGF level was also stimulated by
under controlled inflammation macrophages as reported
in the previous study that HMSC could release massive
anti-inflammatory molecule particularly IL-10 to acceler-
ate the shift of inflammation to proliferation phase that
induce macrophage polarization into macrophage type-2
(M2) with growth factor production capability leading to
wound healing acceleration (Muhar et al. 2019). This
study is in line with our finding on day 6 in which there
was an increase of PDGF level along with wound closure
diameter improvement.

Interestingly, in this study, we found that there was a
decrease of PDGF level at day 9 following HMSC-CM ad-
ministrations indicating the remodeling phase of the treat-
ment group has occurred. However, in control groups as a
normal wound healing process, the PDGF level is higher
than the treated group that indicated that the normal heal-
ing process is under the proliferation phase. We suggest
that HMSC-CM accelerate the wound healing processes
by increasing PDGF levels in the early phase of wound
healing. The mechanism of PDGF in accelerating wound
closure through the binding of PDGF to PDGFR results in
the activation of intracellular signaling pathways including
Ras/Rac, MAPK, PI3K, and STA Src, which subsequently
promote cell proliferation to support new tissue formation
(Kardas et al. 2020). This finding was also in line with
a previous study, which revealed that in this remodeling
phase, the active inflammatory cells reverse to the inactive
sites leading to the decrease of most growth factors par-
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ticularly PDGF (De Oliveira et al. 2016). Theoretically,
PDGF activates fibroblasts to produce collagen to sup-
port wound closure improvement (Zhang et al. 2010). Un-
der hypoxic culture conditions, MSC released a massive
amount of growth factors, particularly PDGF into medium
(Bartaula-Brevik 2017; Putra et al. 2019). Additionally,
the TGF-f3 induces the secretion and autocrine regulation
of PDGF by the upregulation of PDGF-A and both PDGF
receptors (Fischer et al. 2007). Thus, HMSC-CM contains
tons of growth factors to induce tissue repair and regenera-
tion through paracrine mechanism particularly, by activat-
ing fibroblast to collagen-produced myofibroblast leading
to wound closure acceleration (Putra et al. 2019).

As mentioned above, the acceleration of cutaneous
wound healing involves several factors such as platelet
to produce PDGF as an attractant molecule in the early
inflammation phase, macrophage type 2 (M2) to release
PDGF as a growth factor for cell proliferation, which is
associated with wound closure. As the limitation of this
study, we do not analyze the role of platelet and M2 as
the PDGF producer in each phase, including IL-10 as an
anti-inflammatory marker. Thus, the role of HMSC-CM
in regulating PDGF released by platelet and M2 associ-
ated with wound closure acceleration remains unclear. We
also did not analyze IL-10 as a factor inducing polariza-
tion macrophage into M2, which contributes to producing
PDGF.

4. Conclusions

We conclude that TGF-f3 in HMSC-CM accelerates wound
closure by increasing PDGF production in the full-
thickness wound rat model and HMSC-CM may become
the new modality to increase wound treatment.
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