Bioavailability of Nano-calcium from Parang Fishbone Extracted with Alkaline Solvent at Varying Ratio of NaOH and Extraction Time

Febsi Hayati(1), Yudi Pranoto(2*), Priyanto Triwitono(3)
(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Calcium is an important nutrient that supports various biological functions of the body. Calcium plays a role in osmoregulation, muscle contraction, bone mineralization, blood clotting, and regulating the body's acid and base balance. Calcium absorption can be optimal in the body if it has a smaller particle size, namely nano-sized. Parang fish bones have great potential to be used as a source of calcium in the form of nano-calcium. Nano-calcium is calcium in the form of small particles, completely absorbed into the body, and can optimally meet the body's calcium needs. This research aims to evaluate the effect of variations in alkaline solvent concentration and extraction time on particle size and calcium levels of the resulting nano-calcium and determine the absorption of Parang fishbone nano-calcium in the in vitro bioavailability process of the inverted intestinal sac. The nano-calcium extraction method combines a sample ratio of NaOH at 1:3, 1:4, and 1:5 with extraction times of 30, 60, and 90 minutes. The in vitro reverse gut method tested the obtained nano-calcium for bioavailability. The concentration of the basic solvent and the optimum extraction time influence the nano-calcium produced due to the optimal contact time between the material and the solvent during the extraction process. Nano-calcium treatment with a sample ratio: NaOH of 1:4 with an extraction time of 60 minutes, resulted in a water content of 5.67%, ash content 74.20%; protein content 3.52%; fat content 0.117%; calcium content 35.46%; yield 44%, particle size 62 nm; and bioavailability at a 10 minute absorption time of 9.105%, a 20 minute absorption time of 9.222% and a 30 minute absorption time of 9.334%. The sample ratio treatment: NaOH 1:4 with an extraction time of 60 minutes is the best treatment because it can produce a smaller nano-calcium size and high bioavailability.
Keywords
Full Text:
PDFReferences
AOAC. (2005). Official Method of Analysis of The Association of Official Analytical of Chemist. The Association of Official Analytical Chemist, Inc: Arlington
Anggraeni, N., Darmanto, Y.S., dan Riyadi, P.H. (2016). Pemanfaatan nano-kalsium tulang ikan nila (Oreochromis niloticus) pada beras analog dari berbagai macam ubi jalar (Ipomoea batatas L.). Jurnal Aplikasi Teknologi Pangan, 5, 114-122.
Benjakul, S., Sulaiman, M., Theerapho, S., & Pornsatit, S. (2017). Biocalcium powder from precooked skipjack tuna bone: Production and its characteristics. J Food Biochem, 12, 412–421.
Benjakul, S., Mad-Ali, S., Senphan, T., and Sookchoo, P. (2018). Characteristics of biocalcium from pre-cooked skipjack tuna bone as affected by different treatments. Waste and Biomass Valorization, 9(8), 1369–1377.
Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., De Carlos, A., and León, B. (2012). Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering, 32(3), 478–486.
Erfanian A., Mirhosseini, H., Manap, M.Y.A. Rasti, B and Bejo, M.H. (2014). Influence of nano-size reduction on absorption and bioavailability of calcium from fortified milk powder in rats. Food Research International Journal, 66(20),1-11.
Halimah, S.A., Suryani, R.A., Wijayanti, S.W., Pangestu, R.A. (2016). Fortification seaweed noodles (Euchema cottonii Weber-van Bosse, 1913) with nano-calcium from bone catfish (Clarias batrachus Linnaeus. 1758). Aquatic Procedia, (7), 221-225.
Husna A., Handayani, L and F. Syahputra. (2020). Utilization of starry triggerfish bone (Abalistes stellaris) as a calcium source in fishbone flavor product. Aquatic Sciences Journal, 7(1): 13-20.
Idowu, A. T., Benjakul, S., Sinthusamran, S., Sae-leaw, T., Suzuki, N., Kitani, Y. and Sookchoo, P. (2020). Effect of alkaline treatment on characteristics of bio-calcium and hydroxyapatite powders derived from salmon bone. Journal Applied Sciences, 10, 1-12.
Kusumawati, P., Triwitono, P., Anggrahini, S., and Pranoto, Y. (2022). Nano-calcium powder properties from six commercial fish bone in Indonesia. Squalen Bull. Mar. Fish. Postharvest Biotech, 17, 1-12.
Lekahena, V., D. N. Faridah, R. Syarief dan R. Peranginangin. (2014). Karakterisasi fisikokimia nano-kalsium hasil ekstraksi tulang ikan nila menggunakan larutan basa dan asam. Jurnal Teknologi dan Industri Pangan, 25, 57-64.
Logesh, A. R., Pravinkumar, M., SM. Raffi., and Kalaiselvam, M. (2012). Calcium and phosphorus determination in bones of low value fishes, Sardinella longiceps (Valenciennes) and Trichiurus savala (Cuvier), from Parangipettai, Southeast Coast of India. Asian Pacific Journal of Tropical Disease, 2, 254-256.
Mohanraj, V. J. and Chen, Y. (2006). Nano-particle. Tropical Journal of Pharmaceutical Research. 5, 561-573.
Natalijah. (2020). Optimalisasi penggunaan hewan uji tikus (Rattus norvegicus) dalam uji in vitro absorpsi obat per oral menggunakan metode usus terbalik. Indonesian Journal of Laboratory, 3, 15–19.
Nemati M., Huda N., & Ariffin F. (2017). Development of calcium supplements from fish bone wastes of yellowfin tuna (Thunnus albacares) and characterization of nutritional quality. International Food Research Journal, 24, 2419–2426.
Prinaldi, W. V, Suptijah, P., and Uju. (2018). Karakteristik sifat fisikokimia nano-kalsium ekstrak tulang ikan tuna sirip kuning (Thunnus albacares). Jurnal Pengolahan Hasil Perikanan Indonesia, 21, 385–395
Putranto, H. F., Asikin, A. N, dan Kusumaningrum, I. (2015). Karakteristik tepung tulang ikan belida (Chitala sp.) sebagai sumber kalsium dengan metode hidrolisis protein. Ziraa'ah, 40, 11-20.
Ranjan, R., Sawal, R. K., Ranjan, A., and Patil, N. (2019). Comparison of calcium absorption from nano- and micro-sized calcium salts using everted gut sac technique. Indian Journal of Animal Science, 89(3), 337-339.
Suntornsaratoon, P., Charoenphandhu, N., & Krishnamra, N. (2018). Fortified tuna bone powder supplementation increases bone mineral density of lactating rats and their offspring. Journal of the Science of Food and Agriculture, 98(5), 2027–2034.
Santoso, J., Gunji,S., Y. Yoshie-Stark and T. Suzuki. (2006). Mineral content of Indonesia seaweeds and mineral solubility affected by basic cooking. Food Sci. Technology Res, 12, 59-66
Sumarto, Desmelati, Sari, N. L., Anggraeni, R. M., & Arieska, L. (2021). Characteristic of nano-calcium bone from a different species of catfish (Pangasius hypophthalmus, Clarias batrachus, Hemibagrus nemurus, and Paraplotosus albilabris). IOP Conference Series: Earth and Environmental Science, 695(012055), 1-8.
Suptijah, P., Jacoeb, A. M., and Deviyanti, N. (2012). Karakterisasi dan bioavailabilitas nanokalsium cangkang udang vannamei (Litopenaeus vannamei). Jurnal Akuatika, 3(1), 63–73.
Talib, A.,and Zailani, K. (2017). Extraction and purification of yellowfin tuna fishbone flour as an ingredient of future traditional medicine. Journal of Pharmacy, 7(11),8-14.
Toppe, S. Albrektsen., B. Hope., and Aksnes, A., 2007. Chemical composition, mineral content, and amino acid and lipid profiles in bones from various fish species. Comparative Biochemical and Physiology, 14, 395-401.
Uhlemann, J., Diedam, H., Hoheisel, W., Schikarski, T., and Peuket, W. (2021). Modeling and simulation of process technology for nanoparticulate drug formulation. Pharmaceutics, 13, 1-25.
Wei, Y., Li, W., Liu, H., and Hongwei, L. (2023). In situ preparation of spindle calcium carbonate-chitosan/poly (vinyl alcohol) anti-biofouling hydrogels inspired by shellfish. Journal of Industrial and Engineering Chemistry, 121, 499-509.
Yin, Tao., J. W. Park., and S. Xiong. (2016). Physicochemical properties of nano fish bone prepared by wet media milling. Food Science and Technology, 61, 367-373.

Article Metrics


Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Food and Nutrition Progress (print ISSN 0854-6177; online ISSN 2597-9388) is published by the Indonesian Association of Food Technologists in collaboration with the Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada.
Indexed by: