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In contrast to the many studies of language processing, there have been relatively few studies
of arithmetic processing in cognitive psychology. Authors of textbooks for university
students, such as Solso (1991), do not appear to feel a need to address cognitive arithmetic
issues in their books. Some of the main reasons for the lack of interest, courage, and
research effort might include beliefs that language is more important than arithmetic and the
greater number of varieties in language than in arithmetic.

Cognitive arithmetic is a rich domain in which arbitrary notations and symbols are
manipulated and processed internally according to both innate and learned rules. Until now
most studies have dealt with simple cognitive arithmetic processing, especially addition and
multiplication operations. Subtraction and division operations can hardly be found except in a
subtraction study nested in a series of arithmetic experiments (i.e. Krueger & Hallford,
(1988). The strategies that children and adults employ in simple addition and multiplication
were first investigated by Groen and Parkman (1972) and most recently by LeFevre, Bisanz,
and MrKonjic (1988). It seems that research in the more complex arithmetic operations has
not been an interesting area for most cognitive psychologists.

Most of the researchers have used response time measures and error rates to test various
models of cognitive arithmetic processing in children and adults. In addition, a series of
polemics of how children and adults process basic number between Baroody (1985) and
Ashcraft (1985) give a clear evidence that cognitive arithmetic is an extensive as well as a
challenging area needs investigating. Arithmetic, as language, is a symbolic activity that is
well learned and is used extensively in everyday life (Zbrodoff & Logan, 1986).
Additionally, arithmetic is attractive theoretically because of several alternative models
underlying its process. This paper discusses two major models that have attracted many
researchers for more than two decades. The first model is counting-based models, based
primarily on the work of Groen and Parkman (1972), Parkman (1972), Parkman and Groen
(1971), and Restle (1970). The second model is network-retrieval model which based largely
on the studies by Ashcraft and Battaglia (1978), Ashcraft and Stazyk (1981), and Stazyk,
Ashcraft, and Hamann (1982).

Counting-Based Model

Groen and Parkman (1972) and Parkman and Groen (1971) proposed a model of how
children and adults solved simple addition problems (single digit 0-9 for addends). The




Cognitive Arithmetic 11

model, the counting-based model, assumes the existence of a counter with two important
operations. The first operation is setting the counter to the specified number, i.e. one
addend. . The second operation is incrementing the value of the counter by one successively
for a number of times, i.e. the other addend.

After testing and comparing five variations of the counting-based model, Groen and Parkman
(1972) concluded that the best predictor for the model was the minimum addend. Total
response time for the counter to perform the operations was time to set the counter and the
multiplication of time to increment the counter and minimum addend.

Parkman and Groen (1971), using college students, investigated their performance on simple
addition problems (each problem consisted of 2 addends, each was one-digit and nonnegative
number, and their sum, two-digit number). The results showed that: (1) there was a
significant difference between false negative response time and false positive response time;
the false positive response was faster than the false negative one, (2) response times varied as
a function of the minimum digit of the two addends, and (3) response times varied as a
function of the sum of the two addends.

The most striking result of the above study is a strong relationship between the size of the
minimum addend and the response time required for verification of the sum. This finding
supports their theoretical explanation that people employ unconscious counting process; first,
the maximum addend is determined, and then the value is incremented by ones for a number
of times equal to the minimum addend.

In addition to the important finding, Parkman and Groen (1971) concluded that the procedure
used to solve the addition problems had four successive stages. First, a preprocessing stage.
Second, an addition stage, where the sum of the two addends was computed. Third, a
comparison stage, where the result of the addition stage was compared to the stated or
presented sum. Fourth, a response execution stage. The first and fourth stages are considered
important by the researchers on the basis that the effects of the stages are constant and non
interactive with the other two stages. With slightly different in the second and the third
stages, Parkman (1972) stated that the stages could be applied in multiplication operations.

In the light of defending the strength of the minimum addend factor in counting-based model,
Winkelman and Schmidt (1974) investigated the effects of associative interference of
single-digit addition. They showed a significant difference between associative confusions
(e.g. 3 + 3 = 9) and nonassociative confusions (e.g. 3 + 3 = 12). The response time of
addition operation for associative confusion was 54 msec. slower than the comparable
response time for nonassociative confusion (749.5 msec. versus 695.5 msec.). It is apparent
that the finding rules out the explanation that simple arithmetic operation based solely on
internal computations and suggests the involvement of associative components in the
operation.

In order to avoid the technical difficulties of speed of adding measurement in the
counting-based model, such as verbal response timing and subject’s tendency to stretch out
complex numerical responses, Restle (1970) presented a pair of two numbers and their sum
in an addition-verification task. Subject only had to decide whether the sum was true or
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false. Results of the experiment indicated that when the base numbers were close to 100 (e.g.
99 and 101), the response time for correct responses was faster than when the base numbers
were farther from 100 (e.g. 83 and 117). It seems that high speed of addition process for
base numbers closed to 100 depends on the ’approximation and correction’ phenomenon.
Borrowing an example from the experiment, when given a problem of 63 + 34, a subject
may compute 60 + 30 = 90 as an approximation and then makes a correction by adding the
second digits of the two addends, 3 + 4.

In the light of arithmetic operation processes, it is reasonable to infer that subjects in Restle
study had to perform three steps of processing. First, rounding two addends to the nearest
ten (e.g. 23 becomes 20 and 27 becomes 30). Second, approximating the sum of the two
addends based on the rounding numbers. Third, making correction by adjusting the
difference between the original numbers with their roundings.

Network-Retrieval Model

Even though two predictors of the counting-based model, the minimum addend and the
correct sum, might be superior for the response time in addition performance, Ashcraft and
Battaglia (1978) claimed the counting-based model was flawed because of the ’ties’ problem.
In the meantime, ties problem, where addend 1 is equal to addend 2, does not have any
significant linear effect in most equations (see Groen & Parkman’s experiment, 1972).
However, the main role of the ties appears to be a constant value. It could be noted that the
ties should give a substantial effect, since its characteristics are very different from the
nonties ones (addend 1 is smaller or bigger than addend 2).

Based on the common standpoint, it can be predicted that the response time for the ties
addition is slower than the response time for the nonties addition. That is why Ashcraft and
Battaglia (1978), Cambell (1987a, 1987b), and Stazyk, Ashcraft, and Hamann (1982)
proposed that the performance of addition-verification task might depend on access to
memorized information in a network-retrieval basis.

Based on two experiments aimed to test the network-retrieval model, the proponents of the
model concluded that simple mental addition was largely a memory retrieval phenomenon.
They claimed that the network-retrieval model was the best in giving explanation of mental
addition performance in the adults. They give two reasons based on a series of intensive
experiments. First, the network- retrieval model generates some specific predictions about
response time performance, such as priming or repetition effects in both verification and
production tasks. For example, given a second stimulus of 5 + 8 = 13 after a first stimulus
of 6 + 7 = 13, the model predicts that it will be a speeded verification response time
because of the repetition of the sum. In another example, given a second stimulus of 7 + 5
= 12 after a first stimulus of 7 + 6 = 13, the model predicts that it will be another speeded
verification response time because of the repetition of the second addend.

Second, one of the important findings indicates that false negative and positive response
times are slower when the split is small than when the split is large (see Ashcraft &
Battaglia, 1978). It means that the sum stated in addition problem first compared with the
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sum retrieved from the long-term memory. In the case that the difference between the stated
sum and the retrieved sum is small, it seems there is a repetition process, that takes longer
time, in the memory to check the difference whether it is true or false.

One of the other weaknesses of the counting-based model pointed out by the proponents of
the network-retrieval model is the generality of the interpretation when applied to incorrect
operation (see Ashcraft & Battaglia, 1978). It means that the split of two addends is an
important factor to differentiate the performance of the small split and the larger split.
Ashcraft and Battaglia (1978) solved the split problem in their experiments by presenting two
kinds of stimuli. The first ones were the reasonable-false stimuli (stated sums were incorrect
by 1 or 2 splits) and the second ones were the unreasonable-false stimuli (stated sums were
incorrect by 5 or 6 splits).

The data indicated that response time of the reasonable problem was best predicted by the
square of the problem’s correct sum. They explained the result as indication of two
important points. First, the addition operation problems with large sums became increasingly
difficult to verify. Second, the eventual verification depended on retrieval of the correct
answer from memory. It can be argued that the split problem has not been solved properly in
the Ashcraft and Battaglia’s study. It is apparent that they give no clear cut solution whether
response time to perform unreasonable-false addition operation is significantly different from
the reasonable-false addition operation. However, the data indicated that with ties problem
excluded, false response time was much higher if the split between the stated sum and the
correct sum was a reasonable answer of 1 or 2 rather than an unreasonable answer of S or 6
(1,144 msec. versus 1,044 msec.). In addition, response time for the correct sum was the
lowest of all, 1,016 msec.

Discussion

Numerical System

Both models, the counting-based and the network-retrieval, do not account for other
notational systems. All of their studies have used Arabic numeral system as stimuli. One can
ask a question whether their findings can be applied to other numeral systems such as
Roman.

Gonzales and Kolers (1982) tested the idea that the mental operation on symbols from
different notational systems would depend on the interpretation of the symbols and notational
characteristics. In the experiment, the main task was mental addition and the stimuli were
equations of Roman numerals (e.g. [, II, III, IV) and Arabic numerals (e.g. 1, 2, 3, 4). The
results showed that response time depended on the notational characteristics of the symbols,
Roman and Arabic, and also depended on the quantities. In general, the fastest response time
for false positive and false negative instances were condition AAA (Arabic + Arabic =
Arabic) and the slowest ones were condition RRR (Roman + Roman = Roman) with other
conditions were in between.
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It could be noted that the position of the Roman numerals is important in the slowing
performance. A Roman numeral as an addend slows performance rather than a Roman
numeral as a sum. In other word, condition RRA (Roman + Roman = Arabic) takes longer
response time than condition AAR (Arabic + Arabic = Roman) or RAR (Roman + Arabic
= Roman) and condition AAR takes less response time than conditions ARA or RAA. The
outcomes suggest that position is important because the Roman symbols are more disruptive
when they stand for addends than when they stand for total or sum of addends (Gonzales &
Kolers, 1982).

The second important result indicated that response time increased with an increase in the
number of Roman numerals. For example, a Roman numeral added to a larger Arabic
numeral was responded more quickly than the reverse. However, response times were faster
when the minimum addend was Roman numeral than when it was an Arabic numeral. It
seems that subjects make strategy of mental operation by using analog counting, like tallying,
for the Roman symbols.

The different response times for the mental operation on Roman and Arabic numerals can be
attributed to the characteristics of the notational system. The Roman system has the analog
counting system that represents one-to-one relationship between the base number (I) and the
larger number (e.g. II and III) and has the grouping for five (V) and ten (X). On the other
hand, the Arabic system lacks the property of analogy between the quantity and its symbol
represented (Gonzales & Kolers, 1982).

Gonzales and Kolers study leads us to raise the question of whether changes of the symbols
influence the mental operation. This problem is much more complicated since most of the
studies in cognitive arithmetic have used Arabic numerals as stimuli. Mental operations to
this kind of symbols are highly overtrained since the childhood in most parts of the world.
Roman numerals, in contrast, have been used largely for labels, such as numbers of front
pages in textbooks.

Split and Response Time

Another issue that has not been addressed in both models of cognitive arithmetic is the
relationship between split and response time. Even though Parkman and Groen (1971) found
that the false responses were slightly faster in the case of split 1 than in the case of 2 (777
msec. versus 788 msec.), they did not explain clearly the process underlying the relationship.

Krueger and Hallford (1984) pointed out that even though split effect or *symbolic distance
effect’ was an important factor in the prediction of response time performance, it was failed
account for a decrease in false response time when the split was increased from 1 (e.g. 2 + 2
=5)t0(e.g.2 +2 = 6).

Odd-Even Rule

Another important criticism, especially to the network-retrieval model, is the odd-even rule
issue. Krueger and Hallford (1984) argued that some of the concepts in Ashcraft and
Bartaglia study violated the odd-even rule in sum verification task. The odd-even rule states
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that if only one of the two addends is odd, then the correct sum must be odd (i.e. odd +
even = odd or even + odd = odd), and other combinations of two addends must be even
(i.e. odd + odd = even and even + even = even). The odd-even rule is violated whenever
the stated sum deviates from the correct sum, whether odd or even, by split of odd (Krueger,
1986; Krueger & Hallford, 1984).

Krueger and Hallford (1984), using 24 university students in a true-false verification task,
investigated whether they used the odd-even rule in false sum stimuli. The experimenters
created splits of 1, 2, 3, and 4 with the correct sums ranging from 10 to 17. The results of
experiment 1 indicated that (1) response time of correct sum was faster than that of false sum
but slightly less accurate (1,205 msec. versus 1,367 msec.), (2) response time of correct sum
increased significantly as the size of the minimum addend increased from 0 to its minimum
possible value, (3) the reduction in response times and errors was accompanied by downward
dips at splits of +1 and +3, and (4) there was no difference between a split of +1 and a
split of +2 and also there was no difference between a split of +3 and a split of +4.

In multiplication operation, the odd-even rule should be easier to apply than in addition
operation because people do not need to compare the two multipliers in order to use the rule
(see Krueger, 1986). We can watch mainly for evenness since it is more important than
oddness. Detecting an even multiplier indicates that the product must be even, whereas the
two multipliers must be odd to get the odd product.

Autonomy of Arithmetic Processing

One of the most striking result in Krueger and Hallford (1984) study is the claim from most
subjects that they were unaware of having used the odd-even rule. Apparently subjects used
the rule in an autonomous processing fashion. This suggests another issue whether people
perform arithmetic operations autonomously. The issue have been tested in a series of
experiments by Zbrodoff and Logan (1988). In the study, the researchers found that simple
arithmetic processes were partially autonomous. In four of six experiments, the results ruled
out the possibility that arithmetic processes were not autonomous by showing that subjects
produced a Stroop-like associative confusion effect.

However, the remaining experiments did not support the possibility that arithmetic processes
were completely autonomous by showing that subjects could inhibit the processes at will.

The conclusions, even though rather ambiguous, suggest an important issue in cognitive
arithmetic. If the processes underlying simple arithmetic operations partially autonomous, it
might be hypothesized that some simple arithmetic operations, such as addition and
multiplication of two single-digit numbers, could begin without intention.

In a slightly different term, LeFevre, Bisanz, and MrKonjic (1988) addressed a question of
whether activation of arithmetic operations was automatic or obligatory. They presented
subjects a pair of numbers and a third number as a probe. The result indicated that sum
probes were rejected more slowly than neutral probes (855 msec. versus 889.). This finding
clearly supports a prediction that arithmetic operation is obligatory because activation of
arithmetic facts occurs upon presentation of the pair of numbers.
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Easy and Difficult Tasks

Another issue in cognitive arithmetic is type of tasks, i.e. easy or difficult, in most of the
addition and multiplication experiments. Campbell and Graham (1985), comparing
multiplication performance between children in Grade 2 to 5 and undergraduates and
graduates students, found two main results. First, children made errors of 12.5 per cent on
easy task (multiplication of small numbers) and errors of 49.4 per cent on difficult task
(Multiplication of large numbers). Second, students made errors of 5.63 per cent on easy
task and errors of 13.70 per cent on difficult task.

The difference between error rates on the easy task and error rates on the difficult task for
both children and adults seems reflect the basic problem of size effect in arithmetic
operations. It means that large number combinations tend to be more difficult than small
number combinations. The conclusion is supported by a related study comparing a
verification task and a production task in multiplication (Campbell (1987b). The researcher
found that response times for both tasks were much faster for the easy problems than for the
difficult ones. Response time in production task for the easy problems was 798 msec.
whereas for the difficult problems was 998 msec. In the verification task, response time for
the easy problems was 928 msec. whereas for the difficult problems was 1,094 msec.
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