Polymorphism of Cyt-b Gene in Several Indonesian Cattle Using PCR-RFLP Method

Paskah Partogi Agung1,2,3, Dyah Perwitasari2,3, Achmad Farajallah2,3, Syahruddin Said4, Ekayanti Mulyawati Kaiin1, Ferdy Saputra4, Alfandy Hermansyah5, Kuswati Kuswati6, Tri Eko Susilorini6, and Moch. Syamsul Arifin Zein7

1Research Center for Applied Zoology-BRIN, Bogor, Indonesia
2Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia
3Animal Biosciences Study Program, Graduate School, IPB University, Bogor, 16680, Indonesia
4Research Center for Animal Husbandry-BRIN, Bogor, Indonesia
5Post Graduated Student Atmajaya University, Jakarta, Indonesia
6Faculty of Animal Science, Brawijaya University, Malang, Indonesia
7Research Center for Biosystematics and Evolution-BRIN, Bogor, Indonesia

ABSTRACT

The cytochrome b (Cyt-b) gene is one of the genes that is located in the mitochondrial DNA. Variations in the Cyt-b gene can be used to compare different animal species to investigate the origin of certain animal species. This study aimed to assess the genetic diversity of Indonesian local cattle breeds, including Bali cattle as an Indonesian native cattle breed and Banteng as the wild type of Bali cattle, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). A total of 336 individual DNA samples from Indonesian cattle breeds were analyzed in this study. The RFLP method using three restriction enzymes, i.e., HinfI, HaeIII, or XbaI, was used to identify the variation of the Cyt-b gene. The Cyt-b gene was polymorphic based on the PCR-RFLP method. There were six alleles of the Cyt-b gene found in this study, i.e., A and B allele (HinfI), C and D allele (HaeIII), X and Y allele (XbaI). All alleles can be found in Pasundan, Madura, and PO cattle. Pessir was separated from other cattle in cluster 2. The UPGMA results showed three clusters of Indonesian native cattle in this study. Cluster 1 consists of Pasundan, Banteng, and Bali cattle. Cluster 2 consists of Madura, PO, and SO cattle. Pessir was separated from other cattle in cluster 3. The X allele could become an indicator to distinguish Banteng and Bali cattle.

Keywords: Cytochrome, Local cattle, Mitochondria, PCR-RFLP, Polymorphism

Introduction

Indonesia has Bali cattle as native cattle (Hardjoshubroto, 1994) and many local breeds of cattle, including Aceh, Pesisir, Grati, Jabres, Pasundan, Galekan, Sumba Ongole, Ongole Grade, Madura, Katingan, Sumbawa, and Donggala (the characteristics were described in Sutarno and Setyawans (2015)). A well-designed breeding program for Indonesian cattle breed was needed to improve their socio-economic value. To perform a conservation program, especially regarding Indonesian cattle resources, information about the genetic diversity of certain cattle breeds is needed, and it would be a helpful tool for farmers to develop their businesses. In addition, determining the number of the initial (base) population to produce offspring consistent with the objectives of the breeding program is a key factor for the success of the breeding program (Agung et al., 2015).

Mitochondria have been well-known as the powerhouses of the cell due to their most primary function being oxidative phosphorylation (Ladoukakis and Zouros, 2017). Mitochondrial DNA is extensively used to define genetic similarity based on the maternal line. In addition, genetic diversity and genetic structure in certain animal breeds can be investigated using mitochondrial DNA (Sharma et al., 2015). Mammalian mitochondrial DNA encodes 11 messenger RNAs (mRNAs) (translated to 13 proteins), 22 tRNAs, and 2 ribosomal RNAs (rRNAs) (12S and 16S rRNA) (Gustafsson et al., 2016). One gene in the mitochondrial DNA is the cytochrome-b (Cyt-b) gene (Stewart and Chinnery, 2015). Information about polymorphism of the Cyt-b gene can be useful for investigating the origin of certain animal species (Farag et al., 2015) and also for a comparison study of different animal species (Munira et al., 2016). This study aimed to assess the genetic diversity of Indonesian local cattle.
breeds using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.

Materials and Methods

Sample and DNA collection
A total of 336 individual DNA samples from Indonesian cattle breeds were analysed in this study including Pasundan (n=123; from West Java), Madura (n=18; from West Java), SO (n=36; from East Nusa Tenggara), PO (n=120; from East Java), and Banteng (n=14; from East Java). Amplification of the Cyt-b gene was conducted using a pair of primer i.e. forward: (5'-aaaaaaccacggttatcaacta-3') and (reverse: 5'-gcgccctcagatgtttgcc-3') (Hartakat et al., 2015). The PCR process used KAPA2G Robust Hot Start Ready Mix PCR Kit (Kapa Biosystems, Cape Town, South Africa), forward and reverse primers (200 ng/μL), DNA samples (5-50 ng/μL), and H2O up to 25 μL final volume. The PCR program was set as follows: denaturation at 94°C for 5 min; followed by 35 cycles of denaturation at 94°C for 30 seconds, annealing at 52°C for 30 seconds, extension at 72°C for 30 sec, and a final extension at 72°C for 5 min on Mastercycler® Gradient (Eppendorf, Hamburg, Germany). The amplicons that were generated by PCR proceeded to RFLP analysis. A total of 3 μL PCR products, 1.4 μL H2O, and 1 unit (± 0.6 μL) of restriction enzyme Hinfl, HaeIII, or XbaI including its buffer (New England Biolabs, USA) were mixed and incubated at 37°C for 1 hour. Visualization of the RFLP products was conducted by electrophoresis process (2% agarose gel, SyBr® staining, and captured in the GBOX documentation System (Syngene, UK)).

The data was analyzed using POPGEN version 1.32 program (Yen and Boyle, 1997) to generate allele frequency, Nei’s gene diversity (h), gene flow (nm), and UPGMA. Principal Component Analysis (PCA) was performed using Orange 3.27 (Demsar et al., 2013).

Results and Discussion

Using the sequences of the Cyt-b gene from Bos taurus (GenBank Acc. No. AF492351.1), we found that our primer will attach between 14,115 bp and 14,578 bp (base pair) with a total length of our gene target of 464 bp (Figure 1). In 2019, the genetic diversity for Indonesian native cattle breeds has been carried out using microsatellite markers (Agung et al., 2019). In other studies, partial sequences of mitochondrial DNA were evaluated to investigate the genetic diversity of Pasundan cattle (Salimah et al., 2022), Pesisir cattle (Putri et al., 2019), Bali cattle (Hikamwaty et al., 2020), Madura cattle (Wulandari et al., 2019), and Ongole cattle (Mubarak et al., 2019). There were limited reports for mitochondrial DNA variation based on RFLP methods in several Indonesian cattle breeds. In this study, we used the same three restriction enzymes in our previous study in SO and PO cattle breed (Agung and Hermansyah, 2018).

The size of the bands that were cut using the three restriction enzymes can be seen in Table 1. The three restriction enzymes used produced two types of variations, each of which was symbolized sequentially from Hinfl, HaeIII, and XbaI as follows: A, B, C, D, X, and Y. Previously, we have been reported these alleles in SO and PO cattle breed (Agung and Hermansyah, 2018). Visualisation of all allele of the Cyt-b gene is shown in Figure 2. The A and B (Hinfl) alleles in this study were also same as reported in Hartakat et al. (2015). In this study, the A allele were not found in Bali cattle population. In contrast, XbaI the Bali cattle in Hartakat et al. (2015) were all have the A allele. This could be caused by differences in the samples used. In this study, Bali cattle were collected from Nusa Penida island (Bali Province) otherwise the Bali cattle that reported in Hartakat et al. (2015) were from Kupang (East Nusa Tenggara Province).

Table 1. Cytochrome B fragment size is cut by the restriction enzyme

<table>
<thead>
<tr>
<th>Restriction enzyme</th>
<th>Allele</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinfl</td>
<td>A</td>
<td>198 bp, 149bp, 117 bp</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>305 bp, 159 bp</td>
</tr>
<tr>
<td>HaeIII</td>
<td>C</td>
<td>179 bp, ±160 bp, 1120 bp</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>285 bp, 179 bp</td>
</tr>
<tr>
<td>XbaI</td>
<td>X</td>
<td>344 bp, 100 bp</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>464 bp</td>
</tr>
</tbody>
</table>

Frequency of allele based on Cyt-b gene using RFLP can be found at Table 2. Pesisir cattle have the highest frequency of allele D compared to others. We found the highest gene diversity in XbaI (0.4995) (Table 3). On the other hand, the highest gene flow can be found in HaeIII loci. Based on the results, Banteng has only alleles B, Y, and C. Meanwhile, Bali cattle have alleles B, Y, C, and X. Bali cattle are considered a domesticated form of Banteng and become a native cattle breed in Indonesia (Hardjosubroto, 1994). So, allele X (XbaI) might be a differentiating indicator between Banteng and Bali cattle. Otherwise, all alleles were found in Pasundan, Madura, and PO cattle. In our previous study, the B (Hinfl), D (HaeIII), and Y (XbaI) alleles were found only in the PO cattle, while the X (XbaI) allele was found only in the SO cattle (Agung and Hermansyah, 2018). However,
Polymorphism of Cyt-b Gene in Several Indonesian Cattle using PCR-RFLP

Figure 2. Alleles of the Cyt-b gene based on Agung and Hermansyah (2018).

Table 2. Frequency of allele

<table>
<thead>
<tr>
<th>Breed</th>
<th>Allele</th>
<th>HinfI</th>
<th>XbaI</th>
<th>HaeIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasundan (n=123)</td>
<td>A</td>
<td>0.0813</td>
<td>0.9187</td>
<td>0.0244</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.9756</td>
<td>0.9512</td>
<td>0.0488</td>
</tr>
<tr>
<td>Bali (n=12)</td>
<td>X</td>
<td>0.2778</td>
<td>0.7222</td>
<td>0.1111</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>0.9889</td>
<td>0.7647</td>
<td>0.2353</td>
</tr>
<tr>
<td>Madura (n=18)</td>
<td>C</td>
<td>0.7222</td>
<td>0.7222</td>
<td>0.0244</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.2778</td>
<td>0.7222</td>
<td>0.1111</td>
</tr>
<tr>
<td>SO (n=36)</td>
<td>E</td>
<td>0.8667</td>
<td>0.8667</td>
<td>0.0526</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.1333</td>
<td>0.1333</td>
<td>0.0526</td>
</tr>
<tr>
<td>PO (n=120)</td>
<td>G</td>
<td>0.9</td>
<td>0.9</td>
<td>0.01</td>
</tr>
<tr>
<td>Pesisir (n=13)</td>
<td>H</td>
<td>0.8333</td>
<td>0.2308</td>
<td>0.7692</td>
</tr>
<tr>
<td>Banteng (n=14)</td>
<td>I</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Overall (n=336)</td>
<td>J</td>
<td>0.216</td>
<td>0.5137</td>
<td>0.0947</td>
</tr>
</tbody>
</table>

n: number of samples.

Figure 3. UPGMA result of several Indonesian local cattle breeds.

due to the opposite finding in this study it was no longer needed to proposed the B, D, X, and Y alleles as a differentiation factor for SO and PO cattle breeds.

Table 3. Gene diversity and gene flow of the markers

<table>
<thead>
<tr>
<th>Markers</th>
<th>h</th>
<th>nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HinfI</td>
<td>0.3387</td>
<td>0.243</td>
</tr>
<tr>
<td>XbaI</td>
<td>0.4996</td>
<td>0.1799</td>
</tr>
<tr>
<td>HaeIII</td>
<td>0.1714</td>
<td>0.526</td>
</tr>
</tbody>
</table>

h = Nei's gene diversity; nm = gene flow.

UPGMA results showed three clusters of Indonesian cattle in this study. Cluster 1 consists of Pasundan, Banteng, and Bali cattle. Cluster 2 consists of Madura, PO, and SO cattle (Figure 3). Pesisir was separated from other cattle in cluster 3. Based on HSP70 sequence, Madura cattle was genetically close to PO (Prihandini et al., 2022). Based on principle component analysis, we found same result using UPGMA, Pesisir separated from others breed. Furthermore, Pasundan, Banteng and Bali in the same cluster (Figure 4). UPGMA and PCA generated same results. However, PCA
Figure 4. Principle component analysis of several Indonesian local cattle breeds based on Cyt-b gene.

can determine the distribution of data from existing alleles.

Conclusion

The Cyt-b gene were polymorphic in Indonesian cattle breeds based on PCR-RFLP method. The Cyt-b gene polymorphism was very high in Pasundan, Madura, and PO cattle breed. The X (XbaI) allele was very potential to become an indicator to distinguish Banteng and Bali cattle.

Conflict of interest

The authors of the manuscript have no conflict of interest to declare.

Funding statement

This research was funding by National Research and Innovation Agency (BRIN) through DIPA OR PP 2022 scheme (Contract No.29/III.11/HK/2022).

Acknowledgement

We would like to thank all the breeding staff in Karya Anugerah Rumjpotin Farm (PT. KAR) Bogor, and also to Herdian Saputra, Anisa Wulandari, and Sultan Mubarak for supporting this study.

Author’s contribution

PPA, DP, AF, SS, and EMK carried out the study's design, data evaluation, and paper drafting. Sample preparation and analysis were carried out by FS and AH. KK, TES and MSAZ took part in the data collection process. The final manuscript was reviewed and approved by all authors.

Ethics Approval

This study was conducted under ethical approval of the National Research and Innovation Agency (BRIN), Indonesia (Register No. 077/KE.02/SK/10/2022).

References

Hartatik, T., W. B. P. Putra, S. D. Volkandari, and Sumadi. 2015. Polymorphism MtDNA Cytochrome b Gene of Local Cattle in

