Peran α-synuclein sebagai target terapi parkinsonisme pasca cedera kepala

https://doi.org/10.22146/bns.v19i1.61895

Prasetyo Tri Kuncoro(1*), Indarwati Setyaningsih(2), Mochammad Was’an(3)

(1) Fakultas Kedokteran, Universitas Jenderal Soedirman, Purwokerto
(2) Departemen Neurologi, Fakultas Kedokteran-Kesehatan Masyarakat dan Keperawatan Universitas Gadjah Mada, Yogyakarta
(3) Departemen Neurologi, Fakultas Kedokteran-Kesehatan Masyarakat dan Keperawatan Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Parkinsonism or secondary Parkinson's is one of the disabilities of motor disorders caused by head injury. Laboratory and animal experimental studies in head injuries showed decreased neurons in the substantia nigra, dopamine metabolic changes, and α-synuclein pathological changes. Rapid loss of nigrostraital dopaminergic neurons and widespread accumulation of α-synuclein are the pathological hallmark of Parkinson’s Disease. The current hypothesis is that head injuries, especially severe head injury when combined with Parkinson gene mutations, have a strong association with Parkinson's events.

The interaction between excessive expression of α-synuclein with inflammation of the neurons induced by head injury mediates the degeneration of neurons through the nigrostriatal dopaminergic pathway. In addition, activation of microglia cells in striatum showed the effect of synthetic α-synuclein with neuronal inflammation in nigrostriatal dopaminergic pathway. α-Synuclein plays an important role in the pathophysiology of Parkinsonism after head injury. Therefore, identification of therapy with target α-synuclein is essential for reducing morbidity and improving patient’s quality of life. There are 3 strategies to reduce the toxicity of α-synuclein: reduce aggregation, decrease synthesis, and increase α-synuclein clearance. Caspase-1 inhibition can prevent α-synuclein aggregation. In addition, it can also be achieved by immunotherapy approach. α -Synuclein clearance can be increased by upregulating the activity of ubiquitin / proteasome system.

  

ABSTRAK

Parkinsonisme atau Parkinson sekunder merupakan salah satu disabilitas gangguan motorik yang disebabkan karena cedera kepala. Berdasarkan penelitian laboratorium dan hewan coba, pada cedera kepala terjadi penurunan jumlah neuron di substansia nigra, perubahan metabolisme dopamine, dan perubahan patologi α-synuclein. Pada penyakit Parkinson akan terjadi kehilangan yang cepat pada neuron dopaminergik nigrostriatal dan akumulasi luas dari a-synuclein. Hipotesis yang saat ini muncul adalah cedera kepala terutama cedera kepala berat ketika dikombinasikan dengan mutasi gen Parkinson, memiliki hubungan yang kuat dengan kejadian Parkinson.

Interaksi antara ekspresi berlebihan dari α-synuclein dengan inflamasi neuron yang diinduksi oleh cedera kepala memediasi degenerasi neuron melalui jalur dopaminergik nigrostriatal. Selain itu, juga terjadi aktivasi sel mikroglia pada striatum yang menunjukkan efek sinergi α-synuclein dengan inflamasi neuron pada jalur dopaminergik nigrostriatal. α-Synuclein memainkan peran penting pada patofisiologi Parkinsonism pascacedera kepala. Oleh karena itu, identifikasi terapi dengan target α-synuclein sangat penting untuk mengurangi morbiditas dan meningkatkan kualitas hidup pasien. Terdapat 3 strategi untuk melawan toksisitas yang dihasilkan oleh α-synuclein yaitu dengan menurunkan agregasi, menurunkan sintesis, dan meningkatkan clearance α-synuclein. Inhibisi caspase-1 dapat mencegah agregasi α-synuclein. Selain itu dapat pula dilakukan dengan pendekatan imunoterapi. Peningkatan bersihan α-synuclein dapat dilakukan dengan meningkatkan aktivitas ubiquitin/proteasome system.

 


Keywords


Parkinsonism;head injury;a-synuclein;therapy

Full Text:

PDF


References

Fang F, Chen H, Feldman AL, Kamel F, Ye W, Wirdefeldt K. Head injury and Parkinson’s disease: a population-based study. Movement Disorder. 2012;27(13):1632–1635.

Mullin S, Schapira AH. Pathogenic mechanisms of neurodegeneration in Parkinson disease. Neurologic Clinics. 2015;33(1):1-17.

Hutson CB, Lazo CR, Mortazavi F, Giza CC, Hovda D, Chesselet MF. Traumatic brain injury in adult rats causes progressive nigrostriatal dopaminergic cell loss and enhanced vulnerability to the pesticide paraquat. Journal of Neurotrauma. 2011;28(9):1783-1801.

Acosta SA, Tajiri N, de la Pena I, Bastawrous M, Sanberg PR, Kaneko Y, et al. Alpha‐synuclein as a pathological link between chronic traumatic brain injury and Parkinson's disease. Journal of Cellular Physiology. 2015;230(5):1024-1032.

Lee PC, Bordelon Y, Bronstein J, Ritz B. Traumatic brain injury, paraquat exposure, and their relationship to Parkinson disease. Neurology. 2012; 79(20):2061-2066.

Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, et al. Targeting α-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. The Lancet Neurology. 2015;14(8):855-866.

Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, et al. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron. 2010;65(1):66-79.

Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nature Reviews Neurology. 2013;9(1):13-24.

Smith C. The long‐term consequences of microglial activation following acute traumatic brain injury. Neuropathology and Applied Neurobiology. 2013;39(1):35-44.

Chauhan NB. Chronic neurodegenerative consequences of traumatic brain injury. Restorative Neurology and Neuroscience . 2014;32(2):337-365.

Oh IJ. Movement disorders in brain injury. Los Angeles: The Neurology Center of Southern California; 2013.

Wan OW, Chung KK. The role of alpha-synuclein oligomerization and aggregation in cellular and animal models of Parkinson’s disease. PLoS One. 2012;7(6):e38545.

Su E, Bell MJ, Wisniewski SR, Adelson PD, Janesko-Feldman KL, Salonia R, et al. Alpha-synuclein levels are elevated in cerebrospinal fluid following traumatic brain injury in infants and children: the effect of therapeutic hypothermia. Developmental Neuroscience. 2010;32(5-6):385-395.

Uryu K, Chen XH, Martinez D, Browne KD, Johnson VE, Graham DI, et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Experimental Neurology. 2007;208(2):185-192.

Goldman SM, Tanner CM, Oakes D, Bhudhikanok GS, Gupta A, Langston JW. Head injury and Parkinson's disease risk in twins. Annals of Neurology. 2006;60(1):65-72.

Shahaduzzaman M, Acosta S, Bickford PC, Borlongan CV. α-Synuclein is a pathological link and therapeutic target for Parkinson’s disease and traumatic brain injury. Medical Hypotheses. 2013;81(4):675-680.

Israelsson C, Bengtsson H, Kylberg A. Distinct cellular patterns of upregulated chemokine expression supporting a prominent inflammatory role in traumatic brain injury. Journal of Neurotrauma. 2008;25(8):959-974.

Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Disease Models and Mechanisms. 2013;6(6):1307-1315.

Lolekha P, Phanthumchinda K, Bhidayasiri R. Prevalence and risk factors of Parkinson's disease in retired Thai traditional boxers. Movement Disorders. 2010;25(12):1895-1901.

Lokkegaard A, Werdelin LM, Friberg L. Clinical impact of diagnostic SPECT investigations with a dopamine re-uptake ligand. European Journal of Nuclear Medicine & Molecular Imaging. 2002;29(12):1623–1629.

Pagano G, Niccolini F, Politis M. Imaging in Parkinson’s disease. Clinical Medicine. 2016;16(4):371-375.

Thanvi BR, Lo TC. Long term motor complications of levodopa: clinical features, mechanisms, and management strategies. Postgraduate Medical Journal. 2004;80(946):452-458.

Ulusoy A, Di Monte DA. α-Synuclein elevation in human neurodegenerative diseases: Experimental, pathogenetic, and therapeutic implications. Molecular Neurobiology. 2013;47(2):484-494.

Timaru-Kast R, Luh C, Gotthardt P, Huang C, Schafer MK, Engelhard K. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS One. 2012;7(8):e43829.

Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson’s disease. Journal of Biomedicine and Biotechnology. 2012;2012:1–10.

Rivero R, Madero P, Fernandez B, Hilfiker S. Targeting the autophagy/ lysosomal degradation pathway in Parkinson’s disease. Current neuropharmacology. 2016;14(3):238-249.

Tran HT, Chung CH, Iba M, Zhang B, Trojanowski JQ, Luk KC, et al. α-Synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Reports. 2014;7(6):2054-2065.

Toth G, Gardai SJ, Zago W, Bertoncini CW, Cremades N, Roy SL, et al. Targeting the intrinsically disordered structural ensemble of a-synuclein by small molecules as a potential therapeutic strategy for Parkinson’s disease. PLoS ONE. 2014;9(2):e87133.

Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson"s disease: limits and relevance to neuroprotection studies. Movement Disorders. 2013;28(1):61-70.

Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, et al. Reducing C-terminal truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. Journal of Neuroscience. 2014;34(28): 9441-9454.

Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, et al. Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein. The Journal of Neuroscience. 2011; 31(41):14508-14520.

Reish HEA, Standaert DG. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. Journal of Parkinson’s Disease. 2015; 5(1):1-19.



DOI: https://doi.org/10.22146/bns.v19i1.61895

Article Metrics

Abstract views : 324 | views : 1898

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Berkala NeuroSains

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.