Emisi gas metana dan karbon dioksida pada proses pengolahan limbah cair kelapa sawit

https://doi.org/10.22146/bkm.28299

Linarsih Makmun(1*), Sarto Sarto(2)

(1) Departemen Biostatistik, Epidemiologi, dan Kesehatan Populasi, Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan, Universitas Gadjah Mada
(2) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Emission of methane and carbon dioxide gas in the process of processing oil palm liquid waste

Purpose

The purpose of this study was to know, calculate and evaluate the concentration of methane gas and carbon dioxide produced in each wastewater treatment plant (WWTP) pond.

Method

This research was a qualitative research, using case study design and explanatory approach. The object of this research was the emission of methane gas and carbon dioxide emitted from 12 WWTP ponds.

Results

The highest COD and BOD decrement occurred in pond 4 of 39% COD and 61.2% BOD. The highest total methane gas emission was 1.49 x 109 kg hours-1 (1.49 x 106 tons hour-1) occurring in the morning, while the highest total carbon dioxide emission was 2.59 x 109 kg per hour (2.59 x 106 ton hour-1).

Conclusion

The concentrations of methane and carbon dioxide gas produced by each WWTP pool varied greatly depending on temperature, residence time and the amount of mud. Methane gas emissions and carbon dioxide emissions occurred in each WWTP pool with the highest methane gas emission value occurring in pond 3 in the afternoon at 356,64 x 106 mg m-2minute-1 and the highest carbon dioxide emissions occur in pond 3 in the afternoon at 402.145 x 106 mg m-2minute-1. The decrease of COD value in whole anaerobic pool was 52,1% and the decrease of COD value in aerobic pool was 27,2%.


Keywords


POME, COD degradation, methane gas and carbon dioxide



References

  1. Ulum M. Hariyanto. Statistik Kelapa Sawit Indonesia (Indonesian Oil Palm Statistics) 2014.
  2. Siregar, SA. Instalasi Pengolahan Air Limbah 5th ed., Yogyakarta: Kanisius. 2009.
  3. Dirjen Perkebunan. Statistik Perkebunan Sawit Indonesia, Jakarta. 2013.
  4. Rahardjo M.Sc, P.N. Teknologi Pengolahan Limbah Cair Dengan Proses Biologis. 2010.
  5. Gerardi MH. The Microbiology Of Aerobic Digester, United States Of America. 2003.
  6. Mudiyarsoni D. Protokol Kyoto Kompas, ed., Jakarta. 2003.
  7. Yin RK. Studi kasus: Desain dan metode 14th ed. Raja Grafindo Persada. Jakarta. 2015..
  8. Toprak H. Temperature and organic loading dependency of methane and carbon dioxide emission rates of a full-scale anaerobic waste stabilization pond. Water Research. 1995 Apr 1;29(4):1111-9.
  9. Haszpra, L. et al. Chapter 3 Trends and Temporal Variations of Major Greenhouse Gas at a rural site in Central Europe. In L. Haszpr, ed. New York: Springer Dordrecht Heidelberg London, pp. 29–63. 2011.
  10. Rambe SM. Pengaruh waktu tinggal terhadap reaksi hidrolisis pada pra-pembuatan biogas dari limbah cair pabrik kelapa sawit. Jurnal Dinamika Penelitian Industri. 2014;25(1):23-30.
  11. Widarti BN, Susetyo SH, Sarwono E. Degradasi COD Limbah Cair Dari Pabrik Kelapa Sawit Dalam Proses Pembentukan Biogas. Jurnal Integrasi Proses. 2015;5(3).
  12. Casper JK. Greenhouse gases: worldwide impacts. Infobase Publishing; 2010.
  13. Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S. Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment. Chemosphere. 2005 Jun 1;59(11):1575-81.
  14. Rajbhandari BK, Annachhatre AP. Anaerobic ponds treatment of starch wastewater: case study in Thailand. Bioresource technology. 2004 Nov 1;95(2):135-43.
  15. Kroeker EJ, Schulte DD, Sparling AB, Lapp HM. Anaerobic treatment process stability. Journal (Water Pollution Control Federation). 1979 Apr 1:718-27. Available at: http: //www.jstor.org/ stable/25039893.
  16. Theodore L, Kunz RG. Nanotechnology: environmental implications and solutions. John Wiley & Sons; 2005 Apr 22.
  17. Yulianingsih, E. & Setyanto, P. Emisi Metana (CH4) dari Saluran Drainase lahan Gambut di kalimantan Tengah. Jurnal Ilmu Pertanian, 28(Juli), pp.25–30. 2016.
  18. Poh PE, Yong WJ, Chong MF. Palm oil mill effluent (POME) characteristic in high crop season and the applicability of high-rate anaerobic bioreactors for the treatment of POME. Industrial & Engineering Chemistry Research. 2010 Oct 8;49(22):11732-40.
  19. Holgerson MA. Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry. 2015 May 1;124 (1-3):305-18. Available at: http://dx.doi.org/ 10.1007/s10533-015-0099-y.
  20. Safley Jr LM, Westerman PW. Biogas production from anaerobic lagoons. Biological wastes. 1988 Jan 1;23(3):181-93.
  21. Chaikitkaew S, Kongjan P, Sompong O. Biogas production from biomass residues of palm oil mill by solid state anaerobic digestion. Energy Procedia. 2015 Nov 1;79:838-44. Available at: http://dx.doi.org/10.1016/j.egypro.2015.11.575.
  22. Sobek S, Tranvik LJ, Cole JJ. Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochemical Cycles. 2005 Jun 1;19(2).



DOI: https://doi.org/10.22146/bkm.28299

Article Metrics

Abstract views : 4285 | views : 3669

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Berita Kedokteran Masyarakat

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Berita Kedokteran Masyarakat ISSN 0215-1936 (PRINT), ISSN: 2614-8412 (ONLINE).

Indexed by:


Web
Analytics Visitor Counter