SINTESIS NANOPARTIKEL DARI PERAK NITRAT DENGAN TIROSIN SEBAGAI REDUKTOR DAN AGEN PENGKAPING UNTUK MEMBENTUK NANOKOMPOSIT FILM AgNPs-POLI ASAM LAKTAT SEBAGAI ANTIBAKTERI



Chuchita Chuchita(1*)

(1) Gadjah Mada University
(*) Corresponding Author

Abstract


Telah dilakukan sintesis nanopartikel dari perak nitrat dengan asam amino tirosin sebagai reduktor dan agen pengkaping. Reaksi dilakukan pada berbagai pH dan konsentrasi tirosin untuk mengetahui pH dan konsentrasi optimum tirosin dan di analisis dengan instrumen spektrofotometer UV-Vis. Variasi pH tirosin yaitu pada pH 7-13, dan variasi konsentrasi tirosin masing-masing 0,02 mM, 0,1 mM, 0,5 mM, 1 mM, 5 mM, 10 mM, 15 mM, dan 20 mM. Variasi waktu reaksi juga diteliti untuk mengetahui waktu reaksi optimum untuk sintesis AgNPs. Variasi waktu reaksi yang digunakan adalah 15, 30, 45, 60, 75, 90, 105, dan 120 menit. AgNPs disintesis untuk membentuk nanokomposit pada film poli asam laktat (PLA). Nanokomposit film PLA nanopartikel perak (KAgNPs) ini kemudian digunakan sebagai antibakteri.  Karakterisasi dilakukan dengan instrumen spektrofotometer UV-Vis, FTIR, TEM, dan SEM EDX.

Hasil eksperimen menunjukkan bahwa asam amino tirosin dapat berperan sebagai reduktor dan agen penkaping dalam sintesis AgNPs ditandai dengan perubahan warna dari tidak berwarna menjadi kuning. pH sistem berpengaruh terhadap kemampuan tirosin dalam mereduksi ion perak. AgNPs terbentuk pada keadaan basa dengan pH optimum 11. Konsentrasi optimum tirosin adalah 1 mM dan konsentrasi AgNO3 1 mM, sehingga didapatkan perbandingan konsentrasi asam amino tirosin dan AgNO3 yaitu 1:1. Waktu reaksi optimum untuk mensintesis AgNPs terjadi pada menit ke empat puluh lima pada suhu 100 oC.  Hasil karakterisasi AgNPs menggunakan TEM menunjukan bahwa pertikel AgNPs berbentuk bulat. Ukuran partikel rata-rata AgNPs dalam koloidalnya adalah 15,10 nm, sedangkan nanokomposit KAgNPs memiliki ukuran partikel rata-rata yang lebih besar yaitu 15,30 nm.

Kata kunci: nanopartikel perak, tirosin, antibakteri.


Full Text:

PDF


References

Aryal, Santosh, K.C., Remant Bahadur., Bhattarai, Narayan., Kim, Chul Ki., and Hak Yong., 2006, Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids, J. Colloid Interface Sci., 299, 191-197. Chowdhury, I.P., Ghosh, S., Roy, M., and Naskar, M.K., 2015, Green Synthesis of Water-Dispersible Silver Nanoparticles at Romm Temperature Using Green Carambola (Star fruit) Extract, J. Sl-Gel. Sci. Tecnol., 73, 199-207. Daima, H.K., Selvakannan, P.R., Kandjani, A.E., Shukla, R., Bhargava, S.K., and Bansal,V., 2014, Synergistic influence of polyoxometalate surface corona towardsenhancing the antibacterial performance of tyrosine-capped Ag nanoparticles,Nanoscale, 6, 758–765. Dobais, J., and Bernier-Latmani, R., 2013, Silver Release from Silver Nanoparticles in Natural Waters, Environ. Sci. Technol., 47: 4140-4146. Gimenez, B., Lopez de Lacey, A., Perez-Santín, E., Lopez-Caballero, M.E., and Montero,P., 2013, Release of active compounds from agar and agar-gelatin films withgreen tea extract, Food Hyd., 30, 264–271. Gunsolus, I.L., Mousavi, M.P.S., Hussein, K., Bϋhlmann, P., andHaynes, C.L., 2015, Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity, Environ. Sci. Technol., 49, 8078-8086. Guzmán, M.G., Dille, J., and Godet, S., 2009, Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity, Int. J. Chem. Biol. Eng., 2(3), 104-111. Habbalalu, D., Lalley, J., Nadagouda, M.N., and Varma, R. S., 2013, Surface enhancedRaman scattering (SERS) studies of gold and silver nanoparticles prepared usingplant extracts, enzymes, bacteria, biodegradable polymers, and microwaves,Sust. Chem.& Eng., 1, 703–712. Korbekandi, H. & S. Iravani. 2012. Silver Nanoparticles, The Delivery of Nanoparticles. Editor A.A. Hashim.InTech. Kumar, A., Negi, Y.S., Choudhary, V., and Bhardwaj, N.K., 2014, Effect of modified cel-lulose nanocrystals on microstructural and mechanical properties of polyvinylalcohol/ovalbumin biocomposite scaffolds, Mat. Lett., 129, 61–64. Kvitek, L., Panacek, A., Sukupova, J., Kolar, M., Veceroova, R., Prucek, R., Hlecova, M., and Zboril, R., 2008, Effect of Surfactants and Polymers n Atability and Antibacterial Activity of Silver Nanoparticles (NPs), J. Phys. Chem. C, 112, 5825-5834. Magudapathy, P., Gangopadhyay, P., Panigrahi, B.K., Nair, K.G.M., and Dhara, S., 2001,Electrical transport studies of Ag nanoclusters embedded in glass matrix, J. Phys. Chem.B, 299, 142–146. Mailard, M., Giorgio, S., and Pileni, M.P., 2003, Tuning the Size of Silver Nanodisks with Similar Aspect Ratios: Syinthesis and Optical properties, J. Phys. Chem. B, 107, 2466-2470. Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., and Schultz, S., 2002, Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles, J. Chem. Phys., 116, 6755-6759. Pinto, V.V., Ferreira, M.J.,Silva, R., Santos, H.A., Silva, F., and Pereira, C.M., 2010, Long Time Effect on The Stability of Silver Nanoparticles in Aqueous Medium: Effect of The Synthesis and Storage Conditions, Colloids Surf. A: Physicochem. Eng. Aspects, 364, 19-25. Prasad, S.B., 2013, Current Understanding of Synthesis and Pharmacological Aspects of Silver Nanoparticles, Ame. J. of Phy.and Clin. The., 1(7): 536-547. Raffi, M.F., Hussain, T.M., Bhatti, J.I., Akhter, A., Hameed, and Hasan, M.M., 2008, Antibacterial Characterization of Silver Nanoparticles against E: Coli ATCC-15224, J. Mater. Sci. Technol., 24: 192-196. Shankar, S., Chorachoo, J., Jaiswal, L., and Voravuthikunchai, S.P., 2014, The effect ofreducing agent concentrations and temperature on characteristics and antimi-crobial activity of silver nanoparticles, Mat. Lett., 137, 160–163. Shankar, S., Jong, W.H., 2015, Amino acid mediated syntesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composit films, Carb. Poly.,353-363. Shukla, Mahendra, K., Ravindra, P.S., Reddy,C.R.K.,and Bhavanath, J., 2012, Synthesis and characterization of agar-based silver nanoparticles andnanocomposite film with antibacterial applications, Bio.Tec., 107, 295–300. Sondi, I., and Sondi, B.S., 2004, Silver Nanparticles as Antimicrobial Agent: a Case Study on E. coli as a Model for Gram-Negative Bacteria, J. Coolloid Interface Sci., 275, 177-182. Tejamaya, M., Romer, I., Merrifield, R.C., and Lead, J.R., 2012, Stability of Citrate, PVP, and PEG Coated Silver Nanoparticles in Ecotoxicology Media, Environ. Sci. Technol., 46, 7011-7017. Travan, A., Pelillo, C., Donati, I., Marsich, E., Benincasa, M., Scarpa, T., Semeraro, S.,Turco, G., Gennaro, R., Paoletti, S., 2009. Non-cytotoxic silver nanoparticlepolysaccharidenanocomposites with antimicrobial activity. Biomacromolecules 10, 1429–1435. Travan, A., Pelillo, C., Donati, I., Marsich, E., Benincasa, M., Scarpa, T., Semeraro, S.,Turco, G., Gennaro, R., and Paoletti, S., 2009, Non-cytotoxic silver nanoparticlepolysaccharidenanocomposites with antimicrobial activity, Biomacromolecules, 10, 1429–1435. Yoksan, R., and Chirachanchai, S., 2010, Silver nanoparticle-loaded chitosan-starchbased films: Fabrication and evaluation of tensile, barrier, and antimicrobialproperties, Mat. Sci. and Eng. C, 30, 891–897.




Article Metrics

Abstract views : 4932 | views : 8260

Refbacks

  • There are currently no refbacks.




ISSN 0215-9309 (Print)

Jumlah kunjungan : Web
Analytics View my Stat.