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ABSTRACT

Let M and {Ln} be a linear, closed, densely defined operator and a sequence of
linear, closed, densely defined operators in a Banach Space X respectively. We
consider a sequence of generalized resolvents {Rn(λ)}, where Rn(λ) = (Ln−λM)−1M .
In this paper, we will prove that the sequence {Rn(λ)} is uniformly bounded in n
and λ in any compact subset of a certain open set. Then we will concern with
consideration on strong convergence of {Rn(λ)}. Finally we will give a criterion for
the sequence {Rn(λ)} converges strongly.
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1. INTRODUCTION

Resolvent plays an important role in non
degenerate perturbation theory for the eigen-
value problems of linear operators. When we
consider an analytic perturbation, the conti-
nuity in the norm of the resolvent in the pa-
rameter plays the fundamental role (see e.g.
in Kato (1995) and Baumgärtel (1984)).

When we consider some applications, it is
necessary to develop degenerate perturbation
theory, instead of the non degenerate one. By
defining generalized resolvents, instead of the
resolvent, Aryati (2000) developed degenerate
perturbation theory for degenerate eigenvalue
problems. This theory has applications in
quantum mechanics when we want to analyze
the behavior of the Dirac equation in the non
relativistic limit. As mentioned in Thaller
(1992) this investigation is motivated by a
practical reason; that in many cases, it is
useful to replace the Dirac theory by the
simpler Schrödinger theory with some correc-
tions. Later, Aryati (2002) derived analytic
perturbation of a semi simple generalized
eigenvalue, and then Aryati (2004) gave a
result on analytic perturbation of a discrete
generalized eigenvalue.
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In the non degenerate analytic perturba-
tion, the analyticity of the resolvent is an im-
portant condition for eigenvalues to be ana-
lytic. In the case when the resolvent is not an-
alytic, it is still possible to deduce asymptotic
expansions, provided that the eigenvalues are
stable (see Kato (1995)). As in analytic per-
turbation, the behavior of the resolvent is a
basic for asymptotic perturbation theory. The
stability of eigenvalues depend on the region
of strong convergence for the resolvents.

In this paper, we will generalize the
result given by Kato (1995) and will concern
with consideration on strong convergence of
generalized resolvents. Here, we deal with
generalized resolvents which are different from
those given by Alexandre (1999), Kimura
(2005), and Verma (2007).

2. MAIN RESULTS

Let X be a Banach Space, L and M be
linear, closed, densely defined operators in X.
The generalized resolvent set (of L with re-
spect to M), written by ρ

(R)
M (L), is the set

of all scalar λ ∈ C such that the operator
R(λ) = (L− λM)−1M is bounded and
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defined on X. Let B(X) be the set of all
bounded operators on X. The operator R :
ρ
(R)
M (L) −→ B(X) such that

λ ∈ ρ
(R)
M (L) 7−→ R(λ) = (L−λM)−1M ∈ B(X)

is called the generalized resolvent (of L with
respect to M). This definition is different
from that suggested by Kato (1995), that is
(L − λM)−1, and motivated by reasons that
in infinite dimensional spaces, it can happen
that R(λ) is bounded, defined on X, even
when (L− λM)−1 is unbounded, and in cer-
tain condition, we still have the basic proper-
ties which are similar to those in the non de-
generate eigenvalue problem. Note that the
generalized resolvent set can be empty (see
Aryati (2000)), therefore in this paper we as-
sume that the generalized resolvent set is not
empty.

Throughout the following theorems, let
{Ln} be a sequence of linear, closed, densely
defined operators in a Banach Space X . Let
us define Dn = D(Ln) ∩ D(M) and (Ln −
λM)−1 : range M → Dn. Then we consider
a sequence of generalized resolvents {Rn(λ)},
where Rn(λ) = (Ln − λM)−1M . We refer
to Kato (1995) for the concepts of uniformly
bounded, strong convergence, etc. We use the
notation s − limTn = T , for T is the strong
limit of the sequence {Tn}.

Theorem 1 Let N be a natural number. Let
∆b be the set of all λ ∈ C such that M is de-
fined on X, for every n ≥ N , (Ln − λM)−1

are bounded, and the sequence {‖Rn(λ)‖}n≥N

is bounded. Let λ0 ∈ ∆b. Then the sequence
{Rn(λ)} is uniformly bounded in n and λ in
any compact subset Γ of

⋃
(λ0), where

⋃
(λ0) =

{λ ∈ ∆b

 |λ−λ0| < ‖Rn(λ0)‖−1}. Further-
more ∆b is an open set in the complex plane.

Proof. It is easy to show that for every λ, µ ∈
∆b,

Rn(λ)−Rn(µ) = (λ− µ)Rn(λ)Rn(µ).

Let λ0 ∈ ∆b, then for every λ ∈ ∆b,

Rn(λ)
(
1− (λ− λ0)Rn(λ0)

)
= Rn(λ0). (1)

Since for every n ≥ N , Rn(λ0) = (Ln −
λ0M)−1M has a finite norm, we can define
an open disk

⋃
(λ0) = {λ ∈ ∆b

 |λ− λ0| <
‖Rn(λ0)‖−1}. Then from (1) for every n ≥ N
and for every λ ∈ ⋃

(λ0), we have the first
Neumann series

Rn(λ) = Rn(λ0)
(
1− (λ− λ0)Rn(λ0)

)−1

=
∞∑

k=0

(λ− λ0)kRn(λ0)k+1.

If ‖Rn(λ0)‖ ≤ C0, with C0 > 0, it follows
that for λ with |λ − λ0| < 1

C0
, ‖Rn(λ)‖ ≤

C0(1−C0|λ−λ0|)−1. Therefore the sequence
{Rn(λ)} is uniformly bounded in n and λ in
any compact subset Γ of

⋃
(λ0).

Next, we will show that ∆b is open. Let
n ≥ N . Since M is defined on X (hence
bounded) and for any λ0 ∈ ∆b, Gn(λ0) =
(Ln − λ0M)−1 |range M exists and has a finite
norm, then in the open disk {λ ∈ C

 |λ −
λ0| < ‖MGn(λ0)‖−1}, we can define

Ĝn(λ) =
∞∑

k=0

(λ− λ0)k(Gn(λ0)M)kGn(λ0),

with Ĝn(λ0) = Gn(λ0). If we can show that
Ĝn(λ) = (Ln − λM)−1 |range M for λ in the
open disk, then the proof is complete.

a). Ĝn(λ)(Ln−λM) = 1, on D(Ln). For any
u ∈ D(Ln),

Ĝn(λ)(Ln − λM)u =

( ∑∞
k=0(λ− λ0)k(Gn(λ0)M)kGn(λ0)(Ln − λM)

)
u

=
( ∑∞

k=0(λ− λ0)k(Gn(λ0)M)k
)
u

−
( ∑∞

k=0(λ− λ0)k+1(Gn(λ0)M)k+1
)
u

= (λ− λ0)0(Gn(λ0)M)0u = u,

since Gn(λ0)(Ln−λM)u = Gn(λ0)(Ln−λ0M+
λ0M − λM)u = (1− (λ− λ0)Gn(λ0)M)u.
b). (Ln − λM)Ĝn(λ) = 1, on range M. For
any u ∈ range M , if we define a sequence

ΨK :=
( K∑

k=0

(λ− λ0)k(Gn(λ0)M)kGn(λ0)
)
u,

then ΨK ∈ D(Ln) and ΨK
K→∞−→ Ψ = Ĝn(λ)u.
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Moreover,

(Ln − λM)ΨK

= (Ln − λM)
( K∑

k=0

(λ− λ0)k(Gn(λ0)M)kGn(λ0)
)
u

= (Ln − λM)Gn(λ0)
( K∑

k=0

(λ− λ0)k(Gn(λ0)M)k
)
u

= (1− (λ− λ0)MGn(λ0))
( K∑

k=0

(λ− λ0)k(Gn(λ0)M)k
)
u.

Because

‖(λ− λ0)K+1(MGn(λ0))K+1‖
≤ |(λ− λ0)K+1| ‖(MGn(λ0))K+1‖ < 1,

we know that
‖(λ − λ0)K+1(MGn(λ0))K+1‖ K→∞−→ 0 and
(Ln − λM)ΨK

K→∞−→ u. The operator
(Ln−λM) is closed, {ΨK} and {(Ln−λM)ΨK}
are convergent, hence we find that

lim
K→∞

ΨK = Ψ

and

u = lim
K→∞

(Ln − λM)ΨK

= (Ln − λM) lim
K→∞

ΨK

= (Ln − λM)Ψ = (Ln − λM)Ĝn(λ)u.

Hence ∆b is open.
Let ∆s be the set of all λ ∈ C such that

s− limRn(λ) exists.

Theorem 2 The set ∆s is relatively open and
closed in ∆b. There exists R̂(λ) such that the
strong convergence Rn(λ) → R̂(λ) is uniform
in each compact subset of ∆s in the sense that
‖Rn(λ)u−R̂(λ)u‖ → 0 uniformly in λ in each
compact subset of ∆s for each fix u ∈ X.

Proof. First we will show the last assertion
and that ∆s is relatively open in ∆b. Let
λ0 ∈ ∆s, s − lim Rn(λ0) = R̂(λ0), then
s − limRn(λ0)k = R̂(λ0)k, k = 1, 2, .... Note
that for every

λ ∈ {λ ∈ ∆b

 |λ− λ0| < ‖Rn(λ0)‖−1},
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‖Rn(λ)‖ = ‖
∞∑

k=0

(λ− λ0)kRn(λ0)k+1‖

≤
∞∑

k=0

|(λ− λ0)|k‖Rn(λ0)k+1‖.

If ‖Rn(λ0)‖ ≤ C0, then

‖Rn(λ)‖ ≤
∞∑

k=0

|(λ− λ0)|kC0
k+1.

It follows that s− limRn(λ) exists and for λ
with |λ− λ0| < 1

C0
,

s− limRn(λ) =
∞∑

k=0

(λ− λ0)kR̂(λ0)
k+1

= R(λ0)(1− (λ− λ0)R̂(λ0))−1

= R̂(λ).

Next we will show that ∆s is relatively closed
in ∆b. Let λ ∈ ∆b and assume that in each
neighborhood of λ there is a λ0 ∈ ∆s. Since
λ ∈ ∆b, then there exists C > 0 such that
‖Rn(λ)‖ ≤ C. Take λ0 ∈ ∆s with |λ− λ0| <
1

2C . Then ‖Rn(λ0)‖ ≤ 2C = C0, and s −
lim Rn(λ) exists, since |λ − λ0| < 1

2C = 1
C0

.
Hence λ ∈ ∆s.

Note that for each λ, µ ∈ ∆s, the strong
limit R̂(λ) and R̂(µ) satisfies the first resol-
vent equation:

R̂(λ)− R̂(µ) = (λ− µ)R̂(λ)R̂(µ), (2)

hence the strong limit is a pseudoresolvent.
Furthermore, it is easy to prove that R̂(λ)
and R̂(µ) commute.

Let λ, µ ∈ ∆s. If R̂(µ) = 0, then for
every u ∈ X from (2) we get

R̂(λ)u =
(
(R̂(µ) + (λ− µ)R̂(λ)R̂(µ)

)
u

= R̂(µ)u + (λ− µ)R̂(λ)R̂(µ)u = 0,

therefore ker(R̂(λ)) is independent of λ. Let
u ∈ range(R̂(µ)), then u = R̂(µ)v, for some
v ∈ X. The first resolvent equation (2) gives:

u = R̂(µ)v = R̂(λ)v − (λ− µ)R̂(λ)R̂(µ)v

= R̂(λ)v − (λ− µ)R̂(λ)u

= R̂(λ)
(
v − (λ− µ)u

)

= R̂(λ)w,

where w = v − (λ− µ)u. Hence range(R̂(λ))
is also independent of λ.
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If it is provided certain conditions, then
the strong limit becomes a generalized resol-
vent.

Theorem 3 Let ∆s be nonempty and M be
defined every where. If for every λ ∈ ∆s there
exists Ĝ(λ) such that

s− lim(Ln − λM)−1 = Ĝ(λ),

ker(Ĝ(λ)|range M ) = {0}
and ker(MĜ(λ)|range M ) = {0},

then there exists a unique operator L such
that R̂(λ) = Ĝ(λ)M = (L−λM)−1M = R(λ)
is a generalized resolvent. Moreover ∆s =
ρ
(R)
M (L) ∩∆b.

Proof. For every u ∈ range(Ĝ(λ)|range M ),
u can be written as u = Ĝ(λ)Mv(λ). Since
R̂(λ) and R̂(µ) commute, then for every λ, µ ∈
∆s,

Ĝ(λ)MĜ(µ)M(v(µ)− v(λ))

= R̂(λ)R̂(µ)(v(µ)− v(λ))

= R̂(λ)Ĝ(µ)Mv(µ)− R̂(µ)Ĝ(λ)Mv(λ)

=
(
R̂(λ)− R̂(µ)

)
u

= R̂(λ)R̂(µ)(λ− µ)u

= Ĝ(λ)MĜ(µ)M(λ− µ)u.

Let λ ∈ ∆s. Since it is provided that
ker(Ĝ(λ)|range M ) = {0} and

ker(MĜ(λ)|range M ) = {0},

therefore M(v(µ) − v(λ)) = M(λ − µ)u or
Mv(µ) + M(µ)u = v(λ) + M(λ)u, and hence
Mv(λ) + M(λ)u is independent of λ. Define
an operator L with Lu = Mv(λ) + M(λ)u,
then L is a linear operator in X with

D(L) = range(Ĝ(λ)|range M )

and (L − λM)u = Mv(λ) =
(
Ĝ(λ)

)−1
u, for

every u ∈ range(Ĝ(λ)|range M ). Hence Ĝ(λ) =
(L− λM)−1 and

R̂(λ) = Ĝ(λ)M = (L− λM)−1M = R(λ)

is a generalized resolvent. Therefore ∆s ⊂
ρ
(R)
M (L), and hence ∆s ⊂ ρ

(R)
M (L)∩∆b. Next,

let λ, λ0 ∈ ρ
(R)
M (L) ∩∆b. It follows from the

first resolvent equation (2) that

Rn(λ)−R(λ) =
(
1 + (λ− λ0)Rn(λ)

)(
Rn(λ0)

−R(λ0)
)(

1 + (λ− λ0)R(λ)
)
. (3)

For λ0 ∈ ∆s such that there exists Ĝ(λ0)
such that s − lim(Ln − λ0M)−1 = Ĝ(λ0),
ker(Ĝ(λ0)|range M ) = {0} and
ker(MĜ(λ0)|range M ) = {0}, we have

s− limRn(λ0) = R̂(λ0) = R(λ0).

From Theorem 1 we know that {Rn(λ)} is
uniformly bounded, therefore (3) gives s −
lim Rn(λ) = R(λ), hence λ ∈ ∆s or ρ

(R)
M (L)∩

∆b ⊂ ∆s.

3. CONCLUDING REMARK
It is proved that under certain condi-

tions, the sequence of generalized resolvents
converges strongly. This result on the strong
convergence of generalized resolvents gives a
possibility to continue research in develop-
ment of asymptotic degenerate perturbation
theory for degenerate eigenvalue problems.
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