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ABSTRACT 

 
The objective of this paper is to exploit the favourable characteristics of block explicit 

Runge-Kutta and block diagonally implicit Runge-Kutta methods for sequential machines 

to parallel ones.  Both methods are used to solve ordinary differential equations, codes 

based on the methods are execute in sequential and parallel. Numerical results based on 

the two modes of executions are tabulated and compared. 

 

Keywords: Block Explicit Runge-Kutta , Block Diagonally Implicit Runge-Kutta, sequential, 

parallel. 
 
 
Makalah diterima 1 Juli 2005 

 
 
1. INTRODUCTION 

 
Parallelism in ODE  (ordinary 

differential equation)  software can be 

divided into three categories: in coding the 

method  so that it can be executed 

simultaneously on several processors, in 

splitting variables in a multivariable ODE 

system between processors and lastly in 

exploiting parallelism in solving the 

algebraic system involved. This paper 

focuses on the parallel execution of the 

method. 

Work on parallel Runge-Kutta methods 

for solving first order ODEs have been 

proposed by a number of researchers as can 

be seen in [1 - 4]. Iserles and Norsett [5] 

proposed diagonally implicit Runge-Kutta 

method which is designed specifically for 

parallel execution. Cash [6,7] derived explicit 

and diagonally implicit block Runge-Kutta 

method which can be exploited for the 

purpose of parallel implementation. We hope 

by parallelizing the algorithms a more 

effective codes can be developed.                                    
 

2. BLOCK EXPLICIT RUNGE- 

KUTTA METHODS 
 

Cash [6] derived a family of block 

explicit  Runge-Kutta  (BERK)    methods  of  
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order two. At the first point   1nx  the 

formula is given by            
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And at the second point  2nx  after 

normalizing the method in (1) and adding 

one more step, the formula is given by  
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)(mk  denotes the mth iteration of k.  Formula  

(1) and (2) produces second order approxi-

mations at both xn+1 and xn+2 and estimate of 

the local truncation error (LTE) in 
)1(

jny 
is  

)1()2(

jnjn yy    

for j = 1, 2. 

To investigate parallelism in (1) and 

(2), we produce a digraph in Figure 1.  

From Figure 1, on S2; it can be seen  

that all 
)(m

jny 
 for j,m = 1, 2 are independent of 

each other but not for k1 and k2 on S1.  

Meaning, it is possible to calculate 
)(m

jny 
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Figure 1. Illustration of Second Order BERK Methods on Parallel Machine 
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for m, j = 1, 2 in parallel with four processors 

after we compute k1 and k2.  On S4, calculate 

both LTE in parallel using two processors 

and then find the maximum error of the LTE.    

Another second order BERK given in 

Cash [6] is as follows: 

At the point  1nx  , the formula is given by        

         
0  0 

1  1 0                                
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And at  2nx  the formulae is given by 
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The following diagraph is shown to 

make it easier to visualize the parallelism in 

this method.    
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Figure 2. Illustration of Second Order BERK Methods on Parallel Machine 
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1k  first followed by 2k and then 3k , 

after 3,2,1; ik i  have been computed, 

calculate 2,1.;)(  jiy m

jn
 simultaneously using 

four processors. The following is the parallel 

algorithms for second order BERK methods. 
 
Step 1:  

Sequentially compute 
n

xx
h n 0
  is the 

step-size of the method, k1 and k2 on P1. 

 

Step 2: 

Calculate
)1(

1ny , 
)2(

1ny , 
)1(

2ny  and 
)2(

1ny  on P1, 

P2, P3 and P4 respectively. 
 
 
Step 3: 

By using two processors; calculate LTE1 and 

LTE2 in parallel on P1 and P2.  Then, find  

the maximum error of these two LTEs. 
 
 
Step 4: 

Repeat Step 1- Step 3 until the end of the 

integration interval. 

 

3. PARALLELISM IN BDIRK  

    METHODS 

 

In this section, the execution of  block 

diagonally implicit Runge-Kutta (BDIRK) 

methods in Cash [7] on parallel computer 

will be presented. The method is given by the 

following tableau 
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Sequentially the method can be 

implemented as follows: 

At  1nx   we have :   1

)1(

1 hkyy nn               

At 2nx   we have :   )( 21
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2 kkhyyn   

At 1nx   we have :   
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 At 2nx   we have :   
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And at 3nx  : 
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BDIRK method with Butcher array as 

in (3) provides second order solution at 3nx  

and 2nx  and first order solution at 1nx .  

The digraph of this method is given  

below    
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Figure 3. Illustration of BDIRK Methods on Parallel Machine 

 

The digraph of second-order BDIRK 

method above, clearly showed that 

every
)1(

iny  and 
)2(

jny 
 for i = 1, 2; j = 1, 2, 3 are 

independent of each other.  So, we can 

calculate them simultaneously using five 

processors. 

 

4. NUMERICAL RESULTS 
 

Before presenting the numerical 

results, let us introduce the metric for 

measuring the performance of parallel 

programs: 

1. The number of processors, p used. 

2. Parallel time, pt  that is the time period 

elapsed between the beginning of the 

first processor and the end of the last 

processor during the execution of the 

algorithm.   

3. Speed-up, pS compares the parallel run-

ning time, pt of an algorithm that 

uses p processors to solve a particular 

problem, to the sequential running time,   

st of  an algorithm for the same problem, 

it is given by: 

                        
p

s

p
t

t
S  . 

Or it can be defined as the ratio of the 

execution time of the parallel algorithm 

on a single processor and the execution 

time of the parallel algorithm 

on p processors, that is:  
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pE is the efficiency of the parallel 

algorithm and it must be less or equal to 

one ( 1pE ).  If Ep = 1, the speed-up is 

said to be perfect.  Perfect speed-up is 

rarely ever achievable and it can be 

multiplied by 100 to get the percentage.  
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5. 
pt

T
1

 . Temporal Performance of the 

method 

Given below are the test problems 

used, they are solved using BERK and 

BDIRK methods and the programs are run on 

Sequent 30 which is available at University 

Putra Malaysia for various values of step-

size.   
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Exact solution: 
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Problem 5: 
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Exact solution: 
222)( ttety t  
 

 

Numerical results obtained are given in 

Tables 2 - 11 and the notations used are as 

follows:

Table 1. Notations are used in the Numerical Results Tables 

 

     Notation  Description 

      

     BERK1  BERK method for Butcher array (2.1) 

     BERK2  BERK method for Butcher array (2.2) 

     BDIRK  BDIRK method for Butcher array (4.1) 

     h    Step-size used 

     METHOD  Method employed 

     seqt    The execution sequential time (in microseconds) 

     part    The execution parallel time (in microseconds) 

      MAXE  Magnitude of the maximum error of the computed   

solution 

     S   Speed-up of the method 

     E   Efficiency of the method 

 C   Cost of the method 

     T   Temporal Performance of the method 
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Table 2. Numerical Results for Problem 1 

 

 

h  

 

METHOD 

 

seqt  

 

part  

 

MAXE 

 

 BERK1 3212 3048 7.44555 × 10
-4

 

1.0 x 
110
 BERK2 3304 3078 7.50849 × 10

-4
 

 BDIRK 4888 3892 6.54178 × 10
-2

 

 BERK1 33359 31222 7.68991 × 10
-6

 

1.0 x 
210

 BERK2 34081 31960 7.69632 × 10
-6

 

 BDIRK 51292 36932 6.74254 × 10
-3

 

 BERK1 332486 310530 7.71452 × 10
-8

 

1.0 × 10
-3

 BERK2 357018 318595 7.71516 × 10
-8

 

 BDIRK 377545 366810 6.76280 × 10
-4

 

 BERK1 4151072 2975945 7.71698 × 10
-10

 

1.0 × 10
-4

 BERK2 4304168 3038146 7.71705 × 10
-10

 

 BDIRK 3785277 3655726 6.76483 × 10
-5

 

 BERK1 4651527 2922069 7.71700 × 10
-12

 

1.0 × 10
-5

 BERK2 49952251 30380257 7.71700 × 10
-12

 

 BDIRK 44187934 38357113 6.76503 × 10
-6

 

 
 

Table 3. Numerical Results for Problem 2 
 

 

h  

 

 

METHOD 

 

seqt  

 

part  

 

MAXE 

 BERK1 3215 3122 2.68265 × 10
-1

 

1.0 × 10
-1

 BERK2 3431 3163 2.91612 × 10
-1

 

 BDIRK 4396 3956 6.45222 × 10
0
 

 BERK1 33843 30886 3.10373 × 10
-3

 

1.0 × 10
-2

 BERK2 34733 30943 3.12764 × 10
-3

 

 BDIRK 39476 37973 6.51413 × 10
-1

 

 BERK1 336528 310980 3.14617 × 10
-5

 

1.0 × 10
-3

 BERK2 354034 311464 3.14856 × 10
-5

 

 BDIRK 396133 379053 6.51290 × 10
-2

 

 BERK1 3338592 2548952 3.15040 × 10
-7

 

1.0 × 10
-4

 BERK2 3454525 2644023 3.15064 × 10
-7

 

 BDIRK 3901977 3795640 6.51274 × 10
-3

 

 BERK1 34736209 25689459 3.15083 × 10
-9

 

1.0 × 10
-5

 BERK2 36534227 26949736 3.15085 × 10
-9

 

 BDIRK 40482528 39443653 6.51274 × 10
-4
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Table 4. Numerical Results for Problem 3 
 

 

h  

 

 

METHOD 

 

seqt  

 

part  

 

MAXE 

 BERK1 3358 2964 7.51716 × 10
-1

 

1.0 × 10
-1

 BERK2 3480 2995 8.89355 × 10
-1

 

 BDIRK 4446 4161 2.39502 × 10
1
 

 BERK1 37934 31214 9.93971 × 10
-3

 

1.0 × 10
-2

 BERK2 39340 32423 1.00743 × 10
-2

 

 BDIRK 39560 38434 2.22956 × 10
0
 

 BERK1 415294 310561 1.01573 × 10
-4

 

1.0 × 10
-3

 BERK2 429194 310738 1.01705 × 10
-4

 

 BDIRK 387679 381531 2.17819 × 10
-1

 

 BERK1 4060980 3006762 1.01784 × 10
-6

 

1.0 × 10
-4

 BERK2 4096098 3178707 1.01797 × 10
-6

 

 BDIRK 3887938 3824693 2.17290 × 10
-2

 

 BERK1 39278591 28757755 1.01805 × 10
-8

 

1.0 × 10
-5

 BERK2 41553138 29857012 1.01806 × 10
-8

 

 BDIRK 38907232 37979786 2.17236 × 10
-3

 

 
Table 5. Numerical Results for Problem 4 

 

 

h  

 

 

METHOD 

 

seqt  

 

part  

 

MAXE 

 

 BERK1 3231 3015 1.91467 × 10
-3

 

1.0 × 10
-1

 BERK2 3379 3094 3.02466 × 10
-3

 

 BDIRK 4338 3862 8.37090 × 10
-2

 

 BERK1 33549 30699 2.90066 × 10
-5

 

1.0 × 10
-2

 BERK2 35358 31099 3.01182 × 10
-5

 

 BDIRK 45123 35472 8.41596 × 10
-3

 

 BERK1 333609 317679 3.00057 × 10
-7

 

1.0 × 10
-3

 BERK2 376714 329301 3.01169 × 10
-7

 

 BDIRK 449193 348015 8.41644 × 10
-4

 

 BERK1 3592339 2607253 3.01058 × 10
-9

 

1.0 × 10
-4

 BERK2 3617280 2618477 3.01169 × 10
-9

 

 BDIRK 4375188 3469182 8.41645 × 10
-5

 

 BERK1 3375981 2122692 3.01160 × 10
-11

 

1.0 × 10
-5

 BERK2 36370391 23107885 3.01170 × 10
-11

 

 BDIRK 48596000 36909709 8.41645 × 10
-6
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Table 6. Numerical Results for Problem 5 

 

 

h  

 

 

METHOD 

 

 

seqt  

 

part  

 

MAXE 

 BERK1 3274 3024 1.83728 × 10
-3

 

1.0 × 10
-1

 BERK2 3368 3060 1.86484 × 10
-3

 

 BDIRK 4034 3617 5.66906 × 10
-2

 

 BERK1 33431 31143 1.80315 × 10
-5

 

1.0 × 10
-2

 BERK2 33707 31223 1.80594 × 10
-5

 

 BDIRK 35205 34617 5.96789 × 10
-3

 

 BERK1 480013 308860 1.79983 × 10
-7

 

1.0 × 10
-3

 BERK2 487536 309071 1.80011 × 10
-7

 

 BDIRK 355176 345497 5.99680 × 10
-4

 

 BERK1 5845446 3455051 1.79950 × 10
-9

 

1.0 × 10
-4

 BERK2 5953279 3564413 1.79953 × 10
-9

 

 BDIRK 3559931 3461494 5.99968 × 10
-5

 

 BERK1 65757617 36441696 7.71698 × 10
-10

 

1.0 × 10
-5

 BERK2 66702946 37187850 1.79950 × 10
-11

 

 BDIRK 44137409 35645602 5.99997 × 10
-6

 

 
Table 7. Results on the efficiency of the methods for Problem 1 

 

 

h  

 

 

METHOD 
par

seq

t

t
S   

p

S
E   

 

parptC   
part

T
1

  

 BERK1 1.05381 0.52690 6096 3.28084 × 10
-4

 

1.0 × 10
-1

 BERK2 1.07342 0.53671 6156 3.24886 × 10
-4

 

 BDIRK 1.25591 0.25118 19460 2.56937 × 10
-4

 

 BERK1 1.06845 0.53422 62444 3.20287 × 10
-5

 

1.0 × 10
-2

 BERK2 1.06636 0.53318 63920 3.12891 × 10
-5

 

 BDIRK 1.38882 0.27776 184660 2.70768 × 10
-5

 

 BERK1 1.07070 0.53535 621060 3.22030 × 10
-6

 

1.0 × 10
-3

 BERK2 1.12060 0.56030 637190 3.13878 × 10
-6

 

 BDIRK 1.02927 0.20585 1834050 2.72621 × 10
-6

 

 BERK1 1.39488 0.69744 5951890 3.36028 × 10
-7

 

1.0 × 10
-4

 BERK2 1.41671 0.70835 6076292 3.29148 × 10
-7

 

 BDIRK 1.03544 0.20709 18278630 2.73543 × 10
-7

 

 BERK1 1.59186 0.79593 5844138 3.42223 × 10
-7

 

1.0 × 10
-5

 BERK2 1.64423 0.82212 60760514 3.29161 × 10
-8

 

 BDIRK 1.23823 0.24765 178228010 2.80540 × 10
-8
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Table 8. Results on the efficiency of the methods for Problem 2 

 

 

h  

 

 

METHOD 
par

seq

t

t
S   

p

S
E   

 

parptC   
part

T
1

  

 BERK1 1.02979 0.51489 6244 3.20307 × 10
-4

 

1.0 × 10
-1

 BERK2 1.08473 0.54236 6326 3.16156 × 10
-4

 

 BDIRK 1.11122 0.22224 19780 2.52781 × 10
-4

 

 BERK1 1.09574 0.54787 61772 3.23771 × 10
-5

 

1.0 × 10
-2

 BERK2 1.12248 0.56124 61886 3.23175 × 10
-5

 

 BDIRK 1.03958 0.20792 189865 2.63345 × 10
-5

 

 BERK1 1.08215 0.54108 621960 3.21564 × 10
-6

 

1.0 × 10
-3

 BERK2 1.13668 0.56834 622928 3.21064 × 10
-6

 

 BDIRK 1.04506 0.20901 1895265 2.63815 × 10
-6

 

 BERK1 1.30979 0.65490 5097904 3.92318 × 10
-7

 

1.0 × 10
-4

 BERK2 1.30654 0.65327 5288046 3.78212 × 10
-7

 

 BDIRK 1.02802 0.20560 18978200 2.63460 × 10
-7

 

 BERK1 1.35216 0.67608 51378918 3.89265 × 10
-8

 

1.0 × 10
-5

 BERK2 1.35564 0.67782 53899472 3.71061 × 10
-8

 

 BDIRK 1.02634 0.20527 197218265 2.53526 × 10
-8

 

 

 
Table 9. Result on the efficiency of the methods for Problem 3 

 

 

h  

 

 

METHOD 
par

seq

t

t
S   

p

S
E   

 

parptC   
part

T
1

  

 BERK1 1.13293 0.56646 5928 3.37382 × 10
-4

 

1.0 × 10
-1

 BERK2 1.16194 0.58097 5990 3.33890 × 10
-4

 

 BDIRK 1.06849 0.21370 20805 2.40327 × 10
-4

 

 BERK1 1.21529 0.60764 62428 3.20369 × 10
-5

 

1.0 × 10
-2

 BERK2 1.21334 0.60667 64846 3.08423 × 10
-5

 

 BDIRK 1.02930 0.20586 192170 2.60186 × 10
-5

 

 BERK1 1.33724 0.66862 621122 3.21998 × 10
-6

 

1.0 × 10
-3

 BERK2 1.38121 0.69060 621476 3.21815 × 10
-6

 

 BDIRK 1.01611 0.20322 1907655 2.62102 × 10
-6

 

 BERK1 1.35062 0.67531 6013524 3.32584 × 10
-7

 

1.0 × 10
-4

 BERK2 1.28860 0.64430 6357414 3.14593 × 10
-7

 

 BDIRK 1.01654 0.20331 19123465 2.61459 × 10
-7

 

 BERK1 1.36584 0.68292 57515510 3.47732 × 10
-8

 

1.0 × 10
-5

 BERK2 1.39174 0.69587 59714024 3.34930 × 10
-8

 

 BDIRK 1.02442 0.20488 189898930 2.63298 × 10
-8

 

 

 
Table 10. Result on the efficiency of the methods for Problem 4 
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h  

 

 

METHOD 
par

seq

t

t
S   

p

S
E   

 

parptC   
part

T
1

  

 BERK1 1.07164 0.53582 6030 3.31675 × 10
-4

 

1.0 × 10
-1

 BERK2 1.09211 0.54606 6188 3.23206 × 10
-4

 

 BDIRK 1.12325 0.22465 19310 2.58933 × 10
-4

 

 BERK1 1.09284 0.54642 61398 3.25744 × 10
-5

 

1.0 × 10
-2

 BERK2 1.13695 0.56847 62198 3.21554 × 10
-5

 

 BDIRK 1.27207 0.25441 177360 2.81912 × 10
-5

 

 BERK1 1.05014 0.52507 635358 3.14783 × 10
-6

 

1.0 × 10
-3

 BERK2 1.14398 0.57199 658602 3.03674 × 10
-6

 

 BDIRK 1.29073 0.25815 1740075 2.87344 × 10
-6

 

 BERK1 1.37783 0.68891 5214506 3.83545 × 10
-7

 

1.0 × 10
-4

 BERK2 1.38144 0.69072 5236954 3.81901 × 10
-7

 

 BDIRK 1.26116 0.25223 17345910 2.88252 × 10
-7

 

 BERK1 1.59042 0.79521 4245384 4.71100 × 10
-7

 

1.0 × 10
-5

 BERK2 1.57394 0.78697 46215770 4.32753 × 10
-8

 

 BDIRK 1.31662 0.26332 184548545 2.70931 × 10
-8

 

 
 

Table 11. Result on the efficiency of the methods for Problem 5 
 

 

h  

 

 

METHOD 
par

seq

t

t
S   

p

S
E   

 

parptC   
part

T
1

  

 BERK1 1.08267 0.54134 6048 3.30688 × 10
-4

 

1.0 × 10
-1

 BERK2 1.10065 0.55033 6120 3.26797 × 10
-4

 

 BDIRK 1.11529 0.22306 18085 2.76472 × 10
-4

 

 BERK1 1.07347 0.53673 62286 3.21099 × 10
-5

 

1.0 × 10
-2

 BERK2 1.07956 0.53978 62446 3.20277 × 10
-5

 

 BDIRK 1.01699 0.20340 173085 2.88875 × 10
-5

 

 BERK1 1.55414 0.77707 617720 3.23771 × 10
-6

 

1.0 × 10
-3

 BERK2 1.57742 0.78871 618142 3.23550 × 10
-6

 

 BDIRK 1.02801 0.20560 1727485 2.89438 × 10
-6

 

 BERK1 1.69186 0.84593 6910102 2.89431 × 10
-7

 

1.0 × 10
-4

 BERK2 1.67020 0.83510 7128826 2.80551 × 10
-7

 

 BDIRK 1.02844 0.20569 17307470 2.88893 × 10
-7

 

 BERK1 1.80446 0.90223 72883392 2.74411 × 10
-8

 

1.0 × 10
-5

 BERK2 1.79368 0.89684 74375700 2.68905 × 10
-8

 

 
BDIRK 1.23823 0.24765 178228010 2.80540 × 10

-8
 

 
 

5. CONCLUSION 

 
From the results we observed that 

1. Parallel executions of all the methods 

performed better in terms of execution  

time 
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compared to their  sequential 

counterparts. This is more obvious when 

the stepsize is smaller. 

2. Comparing BERK and BDIRK method on 

parallel machines; we observed that 

BERK method performed better in terms 

of speed up, efficiency, cost and 

temporal performance compared to 

BDIRK. BDIRK method gives less than 

30% efficiency compared to 60% 

efficiency in BERK method. For all the 

methods the efficiency increases as the 

stepsizes decreases. It is noted too that as 

the  efficiency increases the speed up 

also increases, the cost decreases and the 

temporal performance increases.  The 

reason why BERK method perform 

better is that in BDIRK method there are 

iterations on the ik which have to be 

performed sequentially and this 

consumed a lot of time. 

3. It is also observed that in BERK method  

BERK2 method performed slightly better 

compared to BERK1 method, this is 

expected because in BERK2 method the 

values of y  ‘s  at  21 ,  nn xx  and at 

3nx   can be computed in parallel 

compared to only  values of y  ‘s  at  

21 ,  nn xx   in BERK1 method. 

 

As a conclusion, before any 

assumption is made, more experiment should 

be carried out, such as test problems which 

include bigger systems of equations, so that 

the superiority of the parallel execution as 

well as the method is more obvious. 
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