
Berkala MIPA, 17(1), Januari 2007

 30

PARALLEL EXECUTION OF BLOCK

RUNGE-KUTTA METHODS FOR SOLVING ORDINARY

DIFFERENTIAL EQUATIONS

Fudziah Ismail 1 , Zailan Siri 2 , Mohamad Othman 3 and Mohamed Suleiman 1

1
Department of Mathematics, University Putra Malaysia,

43400 UPM Serdang, Selangor, Malaysia
2
Institute of Mathematical Sciences, University of Malaya,

50603 Lembah Pantai, Kuala Lumpur, Malaysia

 3
Department of Communication Technology and Network

University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

ABSTRACT

The objective of this paper is to exploit the favourable characteristics of block explicit

Runge-Kutta and block diagonally implicit Runge-Kutta methods for sequential machines

to parallel ones. Both methods are used to solve ordinary differential equations, codes

based on the methods are execute in sequential and parallel. Numerical results based on

the two modes of executions are tabulated and compared.

Keywords: Block Explicit Runge-Kutta , Block Diagonally Implicit Runge-Kutta, sequential,

parallel.

Makalah diterima 1 Juli 2005

1. INTRODUCTION

Parallelism in ODE (ordinary

differential equation) software can be

divided into three categories: in coding the

method so that it can be executed

simultaneously on several processors, in

splitting variables in a multivariable ODE

system between processors and lastly in

exploiting parallelism in solving the

algebraic system involved. This paper

focuses on the parallel execution of the

method.

Work on parallel Runge-Kutta methods

for solving first order ODEs have been

proposed by a number of researchers as can

be seen in [1 - 4]. Iserles and Norsett [5]

proposed diagonally implicit Runge-Kutta

method which is designed specifically for

parallel execution. Cash [6,7] derived explicit

and diagonally implicit block Runge-Kutta

method which can be exploited for the

purpose of parallel implementation. We hope

by parallelizing the algorithms a more

effective codes can be developed.

2. BLOCK EXPLICIT RUNGE-

KUTTA METHODS

Cash [6] derived a family of block

explicit Runge-Kutta (BERK) methods of

Fudziah Ismail dkk, Parallel Execution of Block

 31

order two. At the first point 1nx the

formula is given by

0 0

1 1 0 (1)

2

1

2

1

And at the second point 2nx after

normalizing the method in (1) and adding

one more step, the formula is given by

 0 0

 1 1 0 (2)

 0 2

where

 k f x yn n1 , ,

 112 , hkyxfk nn

1

1

1 hkyy nn ,
)(212

2

1 kkyy h
nn

)(21

1

2 kkhyy nn

2

2

2 2hkyy nn

)(mk denotes the mth iteration of k. Formula

(1) and (2) produces second order approxi-

mations at both xn+1 and xn+2 and estimate of

the local truncation error (LTE) in
)1(

jny
is

)1()2(

jnjn yy

for j = 1, 2.

To investigate parallelism in (1) and

(2), we produce a digraph in Figure 1.

From Figure 1, on S2; it can be seen

that all
)(m

jny
 for j,m = 1, 2 are independent of

each other but not for k1 and k2 on S1.

Meaning, it is possible to calculate
)(m

jny

 S1 S2

 P1 P2 P3 P4

 S3

 S4

 S5

Figure 1. Illustration of Second Order BERK Methods on Parallel Machine

1k 2k

)1(

1ny
)2(

1ny
)1(

2ny)2(

2ny

LTE1

LTE1
LTE2

LTE1

MAXE

LTE1

Berkala MIPA, 17(1), Januari 2007

 32

for m, j = 1, 2 in parallel with four processors

after we compute k1 and k2. On S4, calculate

both LTE in parallel using two processors

and then find the maximum error of the LTE.

Another second order BERK given in

Cash [6] is as follows:

At the point 1nx , the formula is given by

0 0

1 1 0

2

1

2

1

And at 2nx the formulae is given by

2

1
1

2

1

0112

011

00

where k f x yn n1 ,

 k f x y hkn n2 1 1 ,

)(, 2123 kkhyxfk nn

1

1

1 hkyy nn

)(212

2

1 kkyy h
nn

)(21

1

2 kkhyy nn

)2(3212

2

2 kkkyy h
nn

The following diagraph is shown to

make it easier to visualize the parallelism in

this method.

 S1 S2 S3

 S4

 P1 P2 P3 P4

 S5

 P1 P2

 S6

Figure 2. Illustration of Second Order BERK Methods on Parallel Machine

This method is similar to the previous

method; parallelism arises only on
2,1.;)(jmy m

jn because they are indepen-

dent of each other. In this method, calculate

1k 2k 3k

)2(

1ny
)1(

1ny
)1(

2ny
)2(

2ny

LTE1

LTE1
LTE2

MAXE

Fudziah Ismail dkk, Parallel Execution of Block

 33

1k first followed by 2k and then 3k ,

after 3,2,1; ik i have been computed,

calculate 2,1.;)(jiy m

jn
 simultaneously using

four processors. The following is the parallel

algorithms for second order BERK methods.

Step 1:

Sequentially compute
n

xx
h n 0
 is the

step-size of the method, k1 and k2 on P1.

Step 2:

Calculate
)1(

1ny ,
)2(

1ny ,
)1(

2ny and
)2(

1ny on P1,

P2, P3 and P4 respectively.

Step 3:

By using two processors; calculate LTE1 and

LTE2 in parallel on P1 and P2. Then, find

the maximum error of these two LTEs.

Step 4:

Repeat Step 1- Step 3 until the end of the

integration interval.

3. PARALLELISM IN BDIRK

 METHODS

In this section, the execution of block

diagonally implicit Runge-Kutta (BDIRK)

methods in Cash [7] on parallel computer

will be presented. The method is given by the

following tableau

111

1113

11112

11

112

11

2
3

2
3

2
3

2
3

2
1

2
1

 (3)

Sequentially the method can be

implemented as follows:

At 1nx we have : 1

)1(

1 hkyy nn

At 2nx we have :)(21

)1(

2 kkhyyn

At 1nx we have :

 321

2(

1
2

kkk
h

yy nn

 At 2nx we have :

)(4321

)2(

2 kkkkhyyn

And at 3nx :

)
2

3

2

3
(543213 kkkkkhyy nn

BDIRK method with Butcher array as

in (3) provides second order solution at 3nx

and 2nx and first order solution at 1nx .

The digraph of this method is given

below

Berkala MIPA, 17(1), Januari 2007

 34

Figure 3. Illustration of BDIRK Methods on Parallel Machine

The digraph of second-order BDIRK

method above, clearly showed that

every
)1(

iny and
)2(

jny
 for i = 1, 2; j = 1, 2, 3 are

independent of each other. So, we can

calculate them simultaneously using five

processors.

4. NUMERICAL RESULTS

Before presenting the numerical

results, let us introduce the metric for

measuring the performance of parallel

programs:

1. The number of processors, p used.

2. Parallel time, pt that is the time period

elapsed between the beginning of the

first processor and the end of the last

processor during the execution of the

algorithm.

3. Speed-up, pS compares the parallel run-

ning time, pt of an algorithm that

uses p processors to solve a particular

problem, to the sequential running time,

st of an algorithm for the same problem,

it is given by:

p

s

p
t

t
S .

Or it can be defined as the ratio of the

execution time of the parallel algorithm

on a single processor and the execution

time of the parallel algorithm

on p processors, that is:

p

p

p
t

t
S

1
 .

4.
p

p

p

s
p

pt

t

pt

t

p

S
E

1

pE is the efficiency of the parallel

algorithm and it must be less or equal to

one (1pE). If Ep = 1, the speed-up is

said to be perfect. Perfect speed-up is

rarely ever achievable and it can be

multiplied by 100 to get the percentage.

)1(

1

mk)1(

2

mk
)1(

3

mk)1(

4

mk
)1(

5

mk

)0(

ik

)1(

1ny
)1(

2ny
)2(

1ny
)2(

2ny
)2(

3ny

Fudziah Ismail dkk, Parallel Execution of Block

 35

5.
pt

T
1

 . Temporal Performance of the

method

Given below are the test problems

used, they are solved using BERK and

BDIRK methods and the programs are run on

Sequent 30 which is available at University

Putra Malaysia for various values of step-

size.

Problem 1:

50

1)0(

)
20

1
1(

4

1

t

y

yyy

Exact solution:

t

e

ty

4

1

191

20
)(

Problem 2:

10

1)0(

2

t

y

teyy t

Exact solution:
tetty)1()(2

Problem 3:

10

0)0(

22

t

y

ytey t

Exact solution:

tetty 22

2

1
)(

Problem 4:

10

1)0(

)cos(

t

y

tty

Exact solution:

)sin()cos()(tttty

Problem 5:

4.00

1)0(

2

t

y

yty

Exact solution:
222)(ttety t

Numerical results obtained are given in

Tables 2 - 11 and the notations used are as

follows:

Table 1. Notations are used in the Numerical Results Tables

 Notation Description

 BERK1 BERK method for Butcher array (2.1)

 BERK2 BERK method for Butcher array (2.2)

 BDIRK BDIRK method for Butcher array (4.1)

 h Step-size used

 METHOD Method employed

 seqt The execution sequential time (in microseconds)

 part The execution parallel time (in microseconds)

 MAXE Magnitude of the maximum error of the computed

solution

 S Speed-up of the method

 E Efficiency of the method

 C Cost of the method

 T Temporal Performance of the method

Berkala MIPA, 17(1), Januari 2007

 36

Table 2. Numerical Results for Problem 1

h

METHOD

seqt

part

MAXE

 BERK1 3212 3048 7.44555 × 10
-4

1.0 x
110
 BERK2 3304 3078 7.50849 × 10

-4

 BDIRK 4888 3892 6.54178 × 10
-2

 BERK1 33359 31222 7.68991 × 10
-6

1.0 x
210

 BERK2 34081 31960 7.69632 × 10
-6

 BDIRK 51292 36932 6.74254 × 10
-3

 BERK1 332486 310530 7.71452 × 10
-8

1.0 × 10
-3

 BERK2 357018 318595 7.71516 × 10
-8

 BDIRK 377545 366810 6.76280 × 10
-4

 BERK1 4151072 2975945 7.71698 × 10
-10

1.0 × 10
-4

 BERK2 4304168 3038146 7.71705 × 10
-10

 BDIRK 3785277 3655726 6.76483 × 10
-5

 BERK1 4651527 2922069 7.71700 × 10
-12

1.0 × 10
-5

 BERK2 49952251 30380257 7.71700 × 10
-12

 BDIRK 44187934 38357113 6.76503 × 10
-6

Table 3. Numerical Results for Problem 2

h

METHOD

seqt

part

MAXE

 BERK1 3215 3122 2.68265 × 10
-1

1.0 × 10
-1

 BERK2 3431 3163 2.91612 × 10
-1

 BDIRK 4396 3956 6.45222 × 10
0

 BERK1 33843 30886 3.10373 × 10
-3

1.0 × 10
-2

 BERK2 34733 30943 3.12764 × 10
-3

 BDIRK 39476 37973 6.51413 × 10
-1

 BERK1 336528 310980 3.14617 × 10
-5

1.0 × 10
-3

 BERK2 354034 311464 3.14856 × 10
-5

 BDIRK 396133 379053 6.51290 × 10
-2

 BERK1 3338592 2548952 3.15040 × 10
-7

1.0 × 10
-4

 BERK2 3454525 2644023 3.15064 × 10
-7

 BDIRK 3901977 3795640 6.51274 × 10
-3

 BERK1 34736209 25689459 3.15083 × 10
-9

1.0 × 10
-5

 BERK2 36534227 26949736 3.15085 × 10
-9

 BDIRK 40482528 39443653 6.51274 × 10
-4

Fudziah Ismail dkk, Parallel Execution of Block

 37

Table 4. Numerical Results for Problem 3

h

METHOD

seqt

part

MAXE

 BERK1 3358 2964 7.51716 × 10
-1

1.0 × 10
-1

 BERK2 3480 2995 8.89355 × 10
-1

 BDIRK 4446 4161 2.39502 × 10
1

 BERK1 37934 31214 9.93971 × 10
-3

1.0 × 10
-2

 BERK2 39340 32423 1.00743 × 10
-2

 BDIRK 39560 38434 2.22956 × 10
0

 BERK1 415294 310561 1.01573 × 10
-4

1.0 × 10
-3

 BERK2 429194 310738 1.01705 × 10
-4

 BDIRK 387679 381531 2.17819 × 10
-1

 BERK1 4060980 3006762 1.01784 × 10
-6

1.0 × 10
-4

 BERK2 4096098 3178707 1.01797 × 10
-6

 BDIRK 3887938 3824693 2.17290 × 10
-2

 BERK1 39278591 28757755 1.01805 × 10
-8

1.0 × 10
-5

 BERK2 41553138 29857012 1.01806 × 10
-8

 BDIRK 38907232 37979786 2.17236 × 10
-3

Table 5. Numerical Results for Problem 4

h

METHOD

seqt

part

MAXE

 BERK1 3231 3015 1.91467 × 10
-3

1.0 × 10
-1

 BERK2 3379 3094 3.02466 × 10
-3

 BDIRK 4338 3862 8.37090 × 10
-2

 BERK1 33549 30699 2.90066 × 10
-5

1.0 × 10
-2

 BERK2 35358 31099 3.01182 × 10
-5

 BDIRK 45123 35472 8.41596 × 10
-3

 BERK1 333609 317679 3.00057 × 10
-7

1.0 × 10
-3

 BERK2 376714 329301 3.01169 × 10
-7

 BDIRK 449193 348015 8.41644 × 10
-4

 BERK1 3592339 2607253 3.01058 × 10
-9

1.0 × 10
-4

 BERK2 3617280 2618477 3.01169 × 10
-9

 BDIRK 4375188 3469182 8.41645 × 10
-5

 BERK1 3375981 2122692 3.01160 × 10
-11

1.0 × 10
-5

 BERK2 36370391 23107885 3.01170 × 10
-11

 BDIRK 48596000 36909709 8.41645 × 10
-6

Berkala MIPA, 17(1), Januari 2007

 38

Table 6. Numerical Results for Problem 5

h

METHOD

seqt

part

MAXE

 BERK1 3274 3024 1.83728 × 10
-3

1.0 × 10
-1

 BERK2 3368 3060 1.86484 × 10
-3

 BDIRK 4034 3617 5.66906 × 10
-2

 BERK1 33431 31143 1.80315 × 10
-5

1.0 × 10
-2

 BERK2 33707 31223 1.80594 × 10
-5

 BDIRK 35205 34617 5.96789 × 10
-3

 BERK1 480013 308860 1.79983 × 10
-7

1.0 × 10
-3

 BERK2 487536 309071 1.80011 × 10
-7

 BDIRK 355176 345497 5.99680 × 10
-4

 BERK1 5845446 3455051 1.79950 × 10
-9

1.0 × 10
-4

 BERK2 5953279 3564413 1.79953 × 10
-9

 BDIRK 3559931 3461494 5.99968 × 10
-5

 BERK1 65757617 36441696 7.71698 × 10
-10

1.0 × 10
-5

 BERK2 66702946 37187850 1.79950 × 10
-11

 BDIRK 44137409 35645602 5.99997 × 10
-6

Table 7. Results on the efficiency of the methods for Problem 1

h

METHOD
par

seq

t

t
S

p

S
E

parptC
part

T
1

 BERK1 1.05381 0.52690 6096 3.28084 × 10
-4

1.0 × 10
-1

 BERK2 1.07342 0.53671 6156 3.24886 × 10
-4

 BDIRK 1.25591 0.25118 19460 2.56937 × 10
-4

 BERK1 1.06845 0.53422 62444 3.20287 × 10
-5

1.0 × 10
-2

 BERK2 1.06636 0.53318 63920 3.12891 × 10
-5

 BDIRK 1.38882 0.27776 184660 2.70768 × 10
-5

 BERK1 1.07070 0.53535 621060 3.22030 × 10
-6

1.0 × 10
-3

 BERK2 1.12060 0.56030 637190 3.13878 × 10
-6

 BDIRK 1.02927 0.20585 1834050 2.72621 × 10
-6

 BERK1 1.39488 0.69744 5951890 3.36028 × 10
-7

1.0 × 10
-4

 BERK2 1.41671 0.70835 6076292 3.29148 × 10
-7

 BDIRK 1.03544 0.20709 18278630 2.73543 × 10
-7

 BERK1 1.59186 0.79593 5844138 3.42223 × 10
-7

1.0 × 10
-5

 BERK2 1.64423 0.82212 60760514 3.29161 × 10
-8

 BDIRK 1.23823 0.24765 178228010 2.80540 × 10
-8

Fudziah Ismail dkk, Parallel Execution of Block

 39

Table 8. Results on the efficiency of the methods for Problem 2

h

METHOD
par

seq

t

t
S

p

S
E

parptC
part

T
1

 BERK1 1.02979 0.51489 6244 3.20307 × 10
-4

1.0 × 10
-1

 BERK2 1.08473 0.54236 6326 3.16156 × 10
-4

 BDIRK 1.11122 0.22224 19780 2.52781 × 10
-4

 BERK1 1.09574 0.54787 61772 3.23771 × 10
-5

1.0 × 10
-2

 BERK2 1.12248 0.56124 61886 3.23175 × 10
-5

 BDIRK 1.03958 0.20792 189865 2.63345 × 10
-5

 BERK1 1.08215 0.54108 621960 3.21564 × 10
-6

1.0 × 10
-3

 BERK2 1.13668 0.56834 622928 3.21064 × 10
-6

 BDIRK 1.04506 0.20901 1895265 2.63815 × 10
-6

 BERK1 1.30979 0.65490 5097904 3.92318 × 10
-7

1.0 × 10
-4

 BERK2 1.30654 0.65327 5288046 3.78212 × 10
-7

 BDIRK 1.02802 0.20560 18978200 2.63460 × 10
-7

 BERK1 1.35216 0.67608 51378918 3.89265 × 10
-8

1.0 × 10
-5

 BERK2 1.35564 0.67782 53899472 3.71061 × 10
-8

 BDIRK 1.02634 0.20527 197218265 2.53526 × 10
-8

Table 9. Result on the efficiency of the methods for Problem 3

h

METHOD
par

seq

t

t
S

p

S
E

parptC
part

T
1

 BERK1 1.13293 0.56646 5928 3.37382 × 10
-4

1.0 × 10
-1

 BERK2 1.16194 0.58097 5990 3.33890 × 10
-4

 BDIRK 1.06849 0.21370 20805 2.40327 × 10
-4

 BERK1 1.21529 0.60764 62428 3.20369 × 10
-5

1.0 × 10
-2

 BERK2 1.21334 0.60667 64846 3.08423 × 10
-5

 BDIRK 1.02930 0.20586 192170 2.60186 × 10
-5

 BERK1 1.33724 0.66862 621122 3.21998 × 10
-6

1.0 × 10
-3

 BERK2 1.38121 0.69060 621476 3.21815 × 10
-6

 BDIRK 1.01611 0.20322 1907655 2.62102 × 10
-6

 BERK1 1.35062 0.67531 6013524 3.32584 × 10
-7

1.0 × 10
-4

 BERK2 1.28860 0.64430 6357414 3.14593 × 10
-7

 BDIRK 1.01654 0.20331 19123465 2.61459 × 10
-7

 BERK1 1.36584 0.68292 57515510 3.47732 × 10
-8

1.0 × 10
-5

 BERK2 1.39174 0.69587 59714024 3.34930 × 10
-8

 BDIRK 1.02442 0.20488 189898930 2.63298 × 10
-8

Table 10. Result on the efficiency of the methods for Problem 4

Berkala MIPA, 17(1), Januari 2007

 40

h

METHOD
par

seq

t

t
S

p

S
E

parptC
part

T
1

 BERK1 1.07164 0.53582 6030 3.31675 × 10
-4

1.0 × 10
-1

 BERK2 1.09211 0.54606 6188 3.23206 × 10
-4

 BDIRK 1.12325 0.22465 19310 2.58933 × 10
-4

 BERK1 1.09284 0.54642 61398 3.25744 × 10
-5

1.0 × 10
-2

 BERK2 1.13695 0.56847 62198 3.21554 × 10
-5

 BDIRK 1.27207 0.25441 177360 2.81912 × 10
-5

 BERK1 1.05014 0.52507 635358 3.14783 × 10
-6

1.0 × 10
-3

 BERK2 1.14398 0.57199 658602 3.03674 × 10
-6

 BDIRK 1.29073 0.25815 1740075 2.87344 × 10
-6

 BERK1 1.37783 0.68891 5214506 3.83545 × 10
-7

1.0 × 10
-4

 BERK2 1.38144 0.69072 5236954 3.81901 × 10
-7

 BDIRK 1.26116 0.25223 17345910 2.88252 × 10
-7

 BERK1 1.59042 0.79521 4245384 4.71100 × 10
-7

1.0 × 10
-5

 BERK2 1.57394 0.78697 46215770 4.32753 × 10
-8

 BDIRK 1.31662 0.26332 184548545 2.70931 × 10
-8

Table 11. Result on the efficiency of the methods for Problem 5

h

METHOD
par

seq

t

t
S

p

S
E

parptC
part

T
1

 BERK1 1.08267 0.54134 6048 3.30688 × 10
-4

1.0 × 10
-1

 BERK2 1.10065 0.55033 6120 3.26797 × 10
-4

 BDIRK 1.11529 0.22306 18085 2.76472 × 10
-4

 BERK1 1.07347 0.53673 62286 3.21099 × 10
-5

1.0 × 10
-2

 BERK2 1.07956 0.53978 62446 3.20277 × 10
-5

 BDIRK 1.01699 0.20340 173085 2.88875 × 10
-5

 BERK1 1.55414 0.77707 617720 3.23771 × 10
-6

1.0 × 10
-3

 BERK2 1.57742 0.78871 618142 3.23550 × 10
-6

 BDIRK 1.02801 0.20560 1727485 2.89438 × 10
-6

 BERK1 1.69186 0.84593 6910102 2.89431 × 10
-7

1.0 × 10
-4

 BERK2 1.67020 0.83510 7128826 2.80551 × 10
-7

 BDIRK 1.02844 0.20569 17307470 2.88893 × 10
-7

 BERK1 1.80446 0.90223 72883392 2.74411 × 10
-8

1.0 × 10
-5

 BERK2 1.79368 0.89684 74375700 2.68905 × 10
-8

BDIRK 1.23823 0.24765 178228010 2.80540 × 10

-8

5. CONCLUSION

From the results we observed that

1. Parallel executions of all the methods

performed better in terms of execution

time

Fudziah Ismail dkk, Parallel Execution of Block

 41

compared to their sequential

counterparts. This is more obvious when

the stepsize is smaller.

2. Comparing BERK and BDIRK method on

parallel machines; we observed that

BERK method performed better in terms

of speed up, efficiency, cost and

temporal performance compared to

BDIRK. BDIRK method gives less than

30% efficiency compared to 60%

efficiency in BERK method. For all the

methods the efficiency increases as the

stepsizes decreases. It is noted too that as

the efficiency increases the speed up

also increases, the cost decreases and the

temporal performance increases. The

reason why BERK method perform

better is that in BDIRK method there are

iterations on the ik which have to be

performed sequentially and this

consumed a lot of time.

3. It is also observed that in BERK method

BERK2 method performed slightly better

compared to BERK1 method, this is

expected because in BERK2 method the

values of y ‘s at 21 , nn xx and at

3nx can be computed in parallel

compared to only values of y ‘s at

21 , nn xx in BERK1 method.

As a conclusion, before any

assumption is made, more experiment should

be carried out, such as test problems which

include bigger systems of equations, so that

the superiority of the parallel execution as

well as the method is more obvious.

REFERENCES

[1] Gear, C. W. and Xu, X., 1993.

Parallelism Across Time in ODEs.

Applied Numerical Mathematics 11,

45-68.

[2] Amodio, P. and Trigianete, D., 1993. A

Parallel Direct Method for Solving IVP

for ODEs. Applied Numerical

Mathematics 11, 85 - 93.

[3] Jackson, K. R. and Nørsett, S. P., 1990.

The Potential for Parallelism in Runge-

Kutta Methods, Part I: RK Formulas in

Standard Form. Natural Science and

Engineering Research Council of

Canada, The Information Technology

Research Centre of Ontario and

The Norwegian Research Council for

Science and Humanities.

[4] Burrage, K., 1993. Parallel Methods for

Initial Value Problems. Applied

Numerical Mathematics 11, 5 - 25.

[5] Iserles, A. and Nørsett, S. P., 1990. On

the Theory of Parallel Runge-Kutta

Methods. A Journal of Numerical

Analysis 10, 463-488.

[6] Cash, J. R., 1983. Block Runge-Kutta

Methods for the Numerical Integration

of Initial Value Problems in Ordinary

Differential Equations, Part I: The

Nonstiff Case. Mathematics of

Computation, 40(161), 175-191.

[7] Cash, J. R., 1985. Block embedded

explicit Runge-Kutta methods.

Comput. Math. Appl , 395-409.

