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ABSTRACT 
  

This is a partial part of our results in studying generalization of Hilbert-Schmidt and 
Carleman operators in Banach spaces. This problem can be done if we preserve some 
intrinsic properties of Hilbert spaces involved; for examples, reflexivity and separability. 
The result of the generalization of Hilbert-Schmidt operator will be called SM-operator. 
Infact, almost all of properties of the  SM-operator preserve almost all of propertie s of the 
Hilbert-Schmidt operators. The application on some classical Banach spaces will appear in 
the next publications.  
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1. INTRODUCTION 
  

One of the most important classes of 
bounded operators is the class of 
Hilbert-Schmidt operators. Let 1H  and 2H  
be Hilbert spaces. A bounded operator 

1 2A H H: →  is called a Hilbert-Schmidt 
operator if there exists an orthonormal bases 
{ }ne  of 1H  such that  
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     This definition implies that 

1 2A H H: →  is a Hilbert-Schmidt operator if 

and only if 2 1A H H∗ : →  is a 
Hilbert-Schmidt operator ; in this case  
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for every orthonormal bases { }ne  of 1H  
and { }nd  of 2H . Now, question arises, 
whether such an operator can be developed in 
Banach spaces. The answer is positive 
whenever we preserve some instrinsic 

properties of the two Hilbert spaces,i.e. 
reflexivity and separability. The separability 
of Banach space X  is to guarantee the 
existence of countable bases of a Banach 
space X  and the reflexivity of a Banach 
space X  is to guarantee that the bases of 
X  is shrinking (Zippin,1968). Further, 
Johnson.,et al.,(1971) pointed out that the 
existence of bases in the dual ∗X  does imply 
that also X  has a bases , see also 
(Dapa,2000;Morrisson,2001). More precisely, 
if a separable and reflexive Banach space X  
has a shrinking bases, so does the dual 
space ∗X . For example, l p , < < ∞1 p , has 

a bases (Schauder bases) but ∞l  has not.  
 
2. PRELIMINARY 
  

In what follows we shall always assume 
that the Banach spaces X , Y  and Z  are 
reflexive and separable  normed space. Let 

X ∗  be the dual space of ( ),X  that is the 
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collection of all continuously linear 
functionals on X . We always write x x∗,  

to stand for ( )x x∗  and vice versa, for every 

x X∈  and x X∗ ∗∈ .  
A sequence of linearly independent 

vectors { }ne X⊂  is called a Schauder bases 
of X  if for every vector x X∈  there is 
uniquely sequence of  scalars { }nα  such 
that  

1
k k

k

x eα
∞

=

= .∑  

Further, for simplicity and some reason 

we assume that 1ne =  for every n .  We 

define a sequence of vector { }ne X∗ ∗⊂  , 
which is called biorthonormal system of { }

n
e , 

as follows:  
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for every n N∈ . It is true that ne X∗ ∗∈ , for 

ne∗  is linear and bounded, 0k ne e∗, =  for 

every k n≠  and 1k ne e∗, =  for every 

k n= . The sequence { }ne∗  forms a bases of 

the closed subspace [{ }]ne X∗ ∗⊂ . Especially, 

we have [{ }]ne X∗ ∗=  if and only if { }ne  is 
shrinking, i.e.,  

lim k k
n k n

e x e o
∞

∗ ∗ ∗

→∞ =
, = ,∑  

for every x X∗ ∗∈  (Lindenstrauss and 
Tzafriri, 1996, Proposition 1.b.1). 
    Again, in what follows we shall always 
assume that { }ne  and { }nd  are orthonormal 
Schauder bases, or in short, OSB  of X  
and Y  , respectively. If ( )cA L X X∈ , , 
where ( )cL X Y,  is the collection of 
continuously linear operators from Banach 
space X  into Banach space Y , the operator 

( )cA L Y X∗ ∗ ∗∈ ,  is called the adjoint operator 
of A  if for any x X∈  and y Y∗ ∗∈ , we 
have  

Ax y x A y∗ ∗ ∗, = , .  
Then, we have  

, ,n k n kAe d e A d∗ ∗ ∗=  

where, for every , 1,2,...n k =  

1 1

1

.

n k n k n k k
k k

n k k
k

Ae d Ae d Ae d d

e A d d

∞ ∞
∗ ∗ 

  
= =

∞
∗ ∗

=

= = < , >

= < , >

∑ ∑

∑
 

It implies 

1 1 1 1
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The dual space X ∗  also has a dual. It is 
usually denoted by X ∗∗ , is called the second 
dual of ( ),X  and consists of all 

continuously linear functionals on X ∗ . For 
each fixed x X∈  define ( )x f

)
 to be 

( )f x  for all f  in X ∗ . It is clear that x)  

is a linear functional on X ∗ , and since 

( ) ( )x f f x f x= ≤)  , 

we see that x)  in X ∗∗ . Hence we can define 
a map φ  from X  into X ∗∗  by letting 

( )x xφ =
)

 for each x  in X . Since, for  

any nonzero element 0x  in ( ),X , then 

there is  an element f X∗ ∗∈  such that  

1f ∗ =  and ( )0 0f x x∗ = . 

Thus, the map is linear and ( )x xφ =  for 

each x  in X . As a consequence, we have 

      

( ) ( )
1

1

sup ,

sup ,

.

x

x

x x x

x x

x

φ φ
∗

∗

∗

=

∗

=

=

=

=

     (1.1) 

Thus φ  is also  an isometry and sets up  a 

congruence between X  and X ∗∗ . The 
normed space is imbedded X  into X ∗∗  by 
the canonical imbedding φ  in a 
isometrically isomorfic way and 

( )X Xφ ∗∗= . Thus X  can be considered as 

the normed space X ∗∗ . 
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3. MAIN RESULTS 
  
    Based on the results of the last 
discussion we start with the following 
definition.  
 
Definition 1. An operator ( )cA L X Y∈ ,  is 
called an SM-operator from X  into Y , if   

1 1 1 1

, ,n m n m
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∗ ∗ ∗

= = = =
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for every OSB  { }ne  of X  and { }md  of 
Y . 
 

     It is clear that if A  is an SM-operator, 

then the number A :  
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is nonnegative and it does not depend on the 
choice of an OSB  { }ne  of X  and an 
OSB  { }nd  of Y . Let ( )SM X Y,  be the 
collection of  SM-operators from a Banach 
space X  into a Banach space Y .  

     By Definition 1 and (1.1), we have the 
following theorem.  
 
Theorem 2. An operator ( )cA L X Y∈ ,  is an 
SM-operator if only if A∗  is an SM-operator, 
that is, ( )A SM X Y∈ ,  if and only if 

( )A SM Y X∗ ∗ ∗∈ , , and  
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for every OSB  { }ne  of X  and { }kd  of 
Y .  
Theorem 3. Let { }ne  and { }nd  be an 
OSB  of Banach space X  and Y , 
respectively. Then,  

( )i   A A≤  , for every ( )A SM X Y∈ , , 

( )ii  ( )SM X Y,  is a Banach space with  

     respect to . ,  

( )iii  If ( )A SM X Y∈ , , then A  is compact.  

 

Proof: (i) For every x X∈ , we have  
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which implies A A≤ . 
(ii). The space ( )SM X Y,  is a normed space   

    with respect to the norm . , for:  

(ii.a).
1 1

, 0n m
n m

A Ae d
∞ ∞

∗

= =

= ≥∑∑ , for every 

( ).A SM X Y∈ ,

1

0 , 0n m
m

A Ae d A O
∞

∗

=

= ⇔ = ⇔ =∑
(null operator),  

(ii.b).For every scalar α  and A∈SM(X,Y), 
we have 

        

1

1

,

, ,

n m
m

n m
m

A Ae d

Ae d A

α α

α α

∞
∗

=

∞
∗

=

=

= =

∑

∑
  

      and  
 
(ii.c). For every ( )A B SM X Y, ∈ , , we have 
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1 1 1 1
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∑∑ ∑∑
 

or  

A B A B+ ≤ + .  
 

The proof of the completeness of the 
space is as follows. Let { } ( )nA SM X Y⊂ ,  be 
an arbitrary Cauchy sequence. Then, for any 
number 0ε > , there is a positive integer 0n  
such that for every two positive integers 

0m n n, ≥ , we have  

2m nA A
ε− < .  

We want to prove that there is 
( )A SM X Y∈ , such that  

lim 0nn
A A

→
− = . 

Since ( )cL X Y,  is complete and  

m n m nA A A A− ≤ − , 

there is ( )cA L X Y∈ ,  such that  

2nA A
ε− < , 

for every 0n n≥  or  

0lim n
n

A A
→∞

− = . 

Thus, we have 
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for any integers ,s t  and 
0

,m n n≥ . By 
letting m → ∞ , we have 
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for any integers ,s t  and
0

,m n n≥ . Letting 
s → ∞  and t → ∞ , we have 
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n n≥ . Therefore 

n
A A−  

( ),SM X Y∈ and hence 
n

A A= +  ( )nA A−  

in ( ),SM X Y . Moreover,  

,nA A ε− <  

for every  
0

n n≥ . Hence,  

lim 0nn
A A

→
− = . 

 
(iii)  If ( )A SM X Y∈ ,  and x X∈ , we have  
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Ax Ax d d
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and for every positive integer n , we define 
an operator nB X Y: → :   

1

n

n k k
k

B x Ax d d∗

=

= , .∑  

It is clear that ( )n cB L X Y∈ , ,  nB  is a finite 
rank operator, and  

0lim n
n

A B
→∞

− = . 

Therefore, A  is a compact operator.      
 
Theorem 4. Let X Y,  and Z  be Banach 
spaces. If ( )A SM X Y∈ ,  and ( )cB L Y Z∈ , , 

then ( )BA SM X Z∈ ,  and BA B A≤ .  

Proof: For every OSB  { }ne  of 

X ,{ }md Y⊂  and { }jf Z⊂ , we have  

1 1 1
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that is ( )BA SM X Z∈ ,  and  

BA B A≤ .  
    

Let ( )SM X  and ( )cL X  stand for 
( )SM X X,  and ( )cL X X, , respectively. 

Combining the results of Theorem 3 and 
Theorem 4, we have proved that SM(X) is 
∗−algebra, where ∗  is an involution from 
SM(X) into SM(X) satisfying : 
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( ) ( );A A AB B A
∗ ∗∗ ∗ ∗= =  

and  

( )A B A Bα α
∗ ∗ ∗+ = +  

for every ( ),A B SM X∈  and a real scalar 
α , as stated in the following theorem.  
Theorem 5. Let X  be a Banach space 
having a shrinking OSB . Then, ( )SM X  is 
a Banach ∗− algebra and an ideal of 

( )cL X .   
 
CONCLUSION 

     Generalization of Hilbert-Schmidt 
operators into Banach spaces can be done by 
preserving the instrinsic properties of Hilbert 
spaces, i.e., separable and reflexivity. The 
results, denoted by SM(X,Y) has in general the 
same properties of those of Hilbert-Schmidt 
operators. 
     The biorthonormal system  

{ } { }( ) { } { }{ }, : ,n n n ne e e X e X∗ ∗ ∗⊂ ⊂  

and  

{ } { }( ) { } { }{ }, : ,m m m md d d Y d Y∗ ∗ ∗⊂ ⊂  

is the key to solve the condition of 
orthonormality in Hilbert-Schmidt operators, 
used later in ( ),SM X Y . For further works, 
we have been using the operator in  classical 
Banach spaces pL  and pl ,1 p< < ∞ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ACKNOWLEDGEMENTS 

     The second author was partially 
supported by BPPS DIKTI. We also thank all 
the anonymous referees for reading the paper 
carefully. 
 
REFERENCES 
 
Conway, J.B., 1990. A Course in Functional 

Analysis, Springer Verlag, New York.  

Dapa P.S., 2000. On strong M-bases in 
Banach spaces with PRI, Collect. Math. 
51, 3, 277-284.  

Johnson W.B.,Roshental,H.P., and Zippin,M., 
1971. On bases, finite-dimensional 
decompositions and weaker structures 
in Banach spaces, Israel J. Math. 9, 
488-506. 

Lindenstrauss J and Tzafriri L, 1996. 
Classical Banach Spaces I and II, 
Springer Verlag, New York. 

Morrison, T.J.,2001. Functional Analysis: An 
Introduction to Banach Space Theory, 
John Wiley & Sons. Inc. New York.   

Weidmann, J., 1980. Linear Operators in 
Hilbert Spaces, Springer Verlag. New 
York.  

Zippin, M., 1968. A remark on bases and 
reflexivity in Banach spaces, Israel J. 
Math. 6, 74-79  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Berkala MIPA, 16(1), Januari 2006 

 54 

 


