Upper Bound For Matrix Operators On Some Sequence Spaces

Supama

Department of Mathematics, Gadjah Mada University Yogyakarta 55281 – INDONESIA Email: supama@ugm.ac.id, maspomo@yahoo.com

Intisari

Di dalam paper ini, akan didiskusikan masalah pencarian batas atas dan norma operator matrik Hausdorff pada beberapa ruang barisan.

Kata kunci: norma-F, fungsi- ϕ , matriks Hausdorff, batas atas.

Abstract

In this paper, we considered the problem of finding the upper bound and the norm of the Hausdorff matrix operator on some sequence spaces.

Keywords: F-norm, ϕ -function, Hausdorff matrix, upper bound.

1. Preliminaries and Some Basic Notions

Operator theory plays an important role in both pure and applied mathematics. Therefore, it always receives a lot of attention from mathematicians from those areas. In this paper, we discuss about the norm of a certain matrix operator on a certain sequence space. The key references are Jameson and Lashkaripour [2000], [2002], Lashkaripour [2002], [2004], [2005], and Pecari et.al [2001].

In this section, we give some basic notions. As usual, R and N denote the real and natural numbers system, respectively. R^+ denotes the collection of all positive real numbers. The collection of all sequences in R will be denoted by S.

Let $X \subset S$ be a linear space over R. A function $\| \| : X \to R$ is called an *F*-norm if it satisfies

- (i) $||x|| \ge 0$ for every $x \in X$, $||x|| = 0 \Leftrightarrow x = 0$,
- (ii) $||x + y|| \le ||x|| + ||y||$ for every $x, y \in X$, and
- (iii) if $\{x_n\} \subset X$ is a sequence such that $\lim_{n \to \infty} ||x_n x|| = 0$ for some $x \in X$,

and $\{a_n\}$ is a sequence of real numbers which converges to some $a \in R$,

then
$$\lim_{n \to \infty} ||a_n x_n - ax|| = 0$$
.

The linear space X equipped with the F-norm $\| \|$, denoted $(X, \| \|)$, is called an Fnormed space. When the F-norm $\| \| \|$ has been explicitly known, we write X instead of $(X, \| \|)$. An F-normed space is said to be complete if every Cauchy sequence in the space is convergent. A complete F-normed space is called a Frèchet space or shortly an F-space.

A function $\phi: R \to R$ is called a ϕ -function if it satisfies

- (i) $\phi(x) = 0 \Leftrightarrow x = 0$,
- (ii) $\phi(-x) = \phi(x)$, for every $x \in R$,
- (iii) ϕ is increasing on \mathbb{R}^+ ,
- (iv) ϕ is continuous on R, and
- (v) $\lim_{x \to \infty} \phi(x) = \infty$.

A ϕ -function ϕ is said to satisfy a δ_2 -condition if there exists a real number M > 0such that $\phi(2x) \le M\phi(x)$ for every $x \ge 0$. For any sequence of positive numbers $v = \{v_n\}$ and ϕ -function ϕ that satisfies δ_2 -condition, we define

$$l_{\phi} = \left\{ \{x_n\} \in \mathcal{S} : \sum_{n=1}^{\infty} \phi(x_n) < \infty \right\},$$
$$l_{\phi}(v) = \left\{ \{x_n\} \in \mathcal{S} : \sum_{n=1}^{\infty} v_n \cdot \phi(x_n) < \infty \right\}$$

We observe that l_{ϕ} and $l_{\phi}(v)$ are complete F-norm spaces with respect to $\|.\|_{\phi}$ and $\|.\|_{\phi,v}$, respectively, where

$$||x||_{\phi} = \sum_{n=1}^{\infty} \phi(x_n)$$
 and $||x||_{\phi,v} = \sum_{n=1}^{\infty} v_n . \phi(x_n)$

In case, $\phi(t) = |t|^p$, $1 \le p < \infty$, we write $l_p(v)$ instead of $l_{\phi}(v)$.

Let $w = \{w_n\}$ be a decreasing positive sequence of real numbers such that $\lim_{n \to \infty} w_n = 0$ and $\sum_{n=1}^{\infty} w_n = \infty$. We define $d(w, p) = \left\{ x = \{x_n\} : \sum_{n=1}^{\infty} w_n (x_n^*)^p < \infty \right\}$ where $\{x^*\}$ is a decreasing sequence which can be found by rearranging $\{|x_n|\}$. It can be

where $\{x_n^*\}$ is a decreasing sequence which can be found by rearranging $\{x_n\}$. It can be shown that d(w, p) is a space of all sequences with finitely non-zero elements. Further, d(w, p) is an F-normed space with respect to

$$||x||_{d(w,p)} = ||x^*||_{w,p}$$

2. Matrix Operators

Let $\{a_n\}$ be a sequence of real numbers with $a_1 = 1$. For any $n \in \mathbb{N} \cup \{0\}$, we define the operator Δ^n as follows

 $\Delta^{0}a_{k} = a_{k} \Delta^{1}a_{k} = a_{k} - a_{k+1}$, and $\Delta^{n}a_{k} = \Delta^{n-1}(\Delta^{1}a_{k}), n = 2, 3, 4, ...$

Further, the matrix $H = (h_{ij})$, where

$$h_{ij} = \begin{cases} C_{j-1}^{i-1} \cdot \Delta^{i-j} a_j &, & 1 \le j \le i \\ 0 &, & j > i \end{cases}$$

is called the Hausdorff matrix.

Let μ be a probability measure on [0, 1]. For any $n \in N$, we define the sequence $\{a_n\}$ by

$$a_n = \int_0^1 x^{n-1} d\mu(x), \qquad n = 1, 2, 3, \dots$$

then we get the Hausdorff matrix $H(\mu) = (h_{ij})$, with

$$h_{ij} = \begin{cases} C_{j-1}^{i-1} \int_{0}^{1} x^{j-1} (1-x)^{i-j} d\mu(x) , & 1 \le j \le i \\ 0 & , & j > i \end{cases}$$

The followings are some kind of Hausdorff matrices:

1.
$$C(\alpha) = H(\mu_{\alpha})$$
, where $d\mu_{\alpha}(t) = \alpha(1-t)^{\alpha-1}$,
2. $H_0(\alpha) = H(\mu_{\alpha})$, where $d\mu_{\alpha}(t) = \frac{\left|\log t\right|^{\alpha-1}}{\Gamma(\alpha)} dt$, and
3. $G(\alpha) = H(\mu_{\alpha})$, where $d\mu_{\alpha}(t) = \alpha t^{\alpha-1} dt$,

where $\alpha > 0$ is any real number. The matrices $C(\alpha), H_0(\alpha)$, and $G(\alpha)$ are called a Cesaro, Holder, and Gamma matrix respectively.

Let $v = \{v_n\}$ and $w = \{w_n\}$ be sequences of positive numbers. We consider the matrix operator $A: l_{\phi}(v) \rightarrow l_{\phi}(w)$

$$Ax = y = \{y_n\},\$$
$$y_n = \sum_{j=1}^{\infty} a_{n,j} x_j.$$

The norm of A is given by $\|A\| = \sup \left\| Ax \right\|_{\phi, w} \colon x \in l_{\phi}(v), \ \|x\|_{\phi, v} \le 1 \right\}$

We observe the following theorem.

Theorem 2.1 Let $w = \{w_n\}$ be a decreasing sequence of positive real numbers. If the Hausdorff matrix operator $H(\mu)$ maps the space $l_{\phi}(w)$ into itself, then

$$\left\|Hx\right\|_{\phi,w} \le \sup_{k \le n} \frac{w_n}{w_k} \left\|x\right\|_{\phi,w}$$

Proof: For simplicity, we write $H(\mu) = H$. Take any $x \in l_{\phi}(w)$, then

$$\begin{split} \|Hx\|_{\phi,w} &= \sum_{i=1}^{\infty} w_i . \phi \Biggl(\sum_{j=1}^{i} C_{j-1}^{i-1} . \Biggl(\int_{0}^{1} t^{j-1} (1-t)^{i-j} d\mu(t) \Biggr) x_j \Biggr) \\ &\leq \sum_{i=1}^{\infty} w_i \sum_{j=1}^{\infty} \phi(x_j) \\ &\leq \sup_{k \leq n} \frac{w_n}{w_k} \sum_{j=1}^{\infty} w_j . \phi(x_j) = \sup_{k \leq n} \frac{w_n}{w_k} . \|x\|_{\phi,w}. \end{split}$$

As a straight consequence, we then have the following corollary.

Corollary 2.2 If the Hausdorff matrix operator $H(\mu)$ maps the space l_{ϕ} into itself, then

$$\left\|H\right\|_{\phi,1} \le 1.$$

In case, the ϕ -function ϕ is of the form $\phi(x) = |x|^p$, 1 , then we get inequalities for the Hausdorff matrix operator*H*.

Theorem 2.3 Let $v = \{v_n\}$ and $w = \{w_n\}$ be decreasing sequences of positive numbers, with $v_1 = 1$. If the Hausdorff matrix operator $H(\mu)$ maps $l_p(v)$ into $l_p(w)$, 1 ,then

$$\left(\inf\frac{w_n}{v_n}\right)^{1/p} \int_0^1 t^{-1/p} d\mu(t) \le \|H\| \le \left(\sup\frac{w_n}{v_n}\right)^{1/p} \int_0^1 t^{-1/p} d\mu(t)$$

Proof: We write $H(\mu) = H$ for the simplicity. Let $x \in l_p(v)$, then

Supama, Upper Bound forMatrix Operators ...

$$\begin{split} \|Hx\|_{p,w}^{p} &= \sum_{i=1}^{\infty} w_{i} \left(\sum_{j=1}^{i} C_{j-1}^{i-1} \left(\int_{0}^{1} t^{j-1} (1-t)^{i-j} d\mu(t) \right) x_{j} \right)^{p} \\ &\leq \sum_{i=1}^{\infty} \sum_{j=1}^{i} w_{j} \left(C_{j-1}^{i-1} \left(\int_{0}^{1} t^{j-1} (1-t)^{i-j} d\mu(t) \right) x_{j} \right)^{p} \\ &\leq \left(\int_{0}^{1} t^{-1/p} d\mu(t) \right)^{p} \sum_{i=1}^{\infty} \frac{w_{i}}{v_{i}} v_{i} \cdot x_{i}^{p} \\ &\leq \sup \frac{w_{n}}{v_{n}} \left(\int_{0}^{1} t^{-1/p} d\mu(t) \right)^{p} \sum_{i=1}^{\infty} v_{i} \cdot x_{i}^{p} \\ &= \sup \frac{w_{n}}{v_{n}} \left(\int_{0}^{1} t^{-1/p} d\mu(t) \right)^{p} \|x\|_{v,p}^{p}. \end{split}$$

These prove the right hand side of the inequality. Further, we are going to prove the left hand side of the inequality.

Let
$$0 < \delta < \frac{1}{p}$$
, $x_n = (n)^{-(1/p)-\delta}$, and $\varepsilon \in (0,1)$. It is clear that $\{x_n\} \in l_p$. Since

 $0 < v_n \le 1$ for every $n \in N$, then $\{x_n\} \in l_p(v)$. Take α and N such that

$$\begin{split} & \left(1+\frac{1}{\alpha}\right)^{-2/p} > 1+\varepsilon, \\ & \int_{\alpha/n}^{1} t^{-1/p} d\mu(t) > (1-\varepsilon) \int_{0}^{1} t^{-1/p} d\mu(t), \quad n \ge N, \text{ and} \\ & \sum_{k=N}^{\infty} w_k x_k^p > (1-\varepsilon) \sum_{k=1}^{\infty} w_k x_k^p, \end{split}$$

then

$$(Hx)_{n} = \sum_{k=1}^{n} C_{k-1}^{n-1} \left(\int_{0}^{1} t^{k-1} (1-t)^{n-k} d\mu(t) \right) x_{k}$$

$$\geq (1-\varepsilon)^{2} x_{n} \int_{0}^{1} t^{-1/p} d\mu(t), \quad n \geq N.$$

Hence

$$w_n^{1/p}(Hx)_n \ge (1-\varepsilon)^2 w_n^{1/p} x_n \int_0^1 t^{-1/p} d\mu(t), \quad n \ge N.$$

Further,

$$\begin{aligned} \left\| Hx \right\|_{p,w}^{p} &= \sum_{n=N}^{\infty} w_{n} (Hx)_{n}^{p} \\ &\geq (1-\varepsilon)^{2p} \cdot \left(\int_{0}^{1} t^{-1/p} d\mu(t) \right)^{p} \sum_{n=1}^{\infty} w_{n} x_{n}^{p} \\ &\geq (1-\varepsilon)^{2p+1} \cdot \left(\int_{0}^{1} t^{-1/p} d\mu(t) \right)^{p} \sum_{n=1}^{\infty} w_{n} x_{n}^{p} \\ &\geq (1-\varepsilon)^{2p+1} \cdot \left(\int_{0}^{1} t^{-1/p} d\mu(t) \right)^{p} \sum_{n=1}^{\infty} \frac{w_{n}}{v_{n}} v_{n} x_{n}^{p} \\ &\geq \inf \frac{w_{n}}{v_{n}} (1-\varepsilon)^{2p+1} \cdot \left(\int_{0}^{1} t^{-1/p} d\mu(t) \right)^{p} \left\| x \right\|_{v,p}^{p}. \end{aligned}$$

These implies

$$||Hx||_{p,w}^{p} \ge \inf \frac{w_{n}}{v_{n}} \cdot \left(\int_{0}^{1} t^{-1/p} d\mu(t)\right)^{p} ||x||_{v,p}^{p}$$

If in the Theorem 2.4, we take $v_n = w_n$ for every *n*, then we get the following corollaries.

Corollary 2.5 If the Hausdorff matrix $H(\mu)$ maps the space $l_p(w)$ into itself, then

$$||H||_{p,w} = \int_{0}^{1} t^{-1/p} d\mu(t)$$

Corollary 2.6 Let $1 < p, q < \infty$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. If the matrices $C(\alpha)$, $H_0(\alpha)$, and $G(\alpha)$ map the space $l_p(w)$ into itself, then

$$\begin{split} \left\|C(\alpha)\right\|_{w,p} &= \frac{\Gamma(\alpha+1)\Gamma(1/q)}{\Gamma(\alpha+1/q)}, \qquad \alpha > 0\\ \left\|H_0(\alpha)\right\|_{w,p} &= \frac{1}{\Gamma(\alpha)} \int_0^1 t^{-1/p} \left|\log t\right|^{\alpha-1} dt, \qquad \alpha > 0\\ \left\|G(\alpha)\right\|_{w,p} &= \frac{\alpha p}{\alpha p - 1}, \qquad \alpha p > 1. \end{split}$$

Let $w = \{w_n\}$ be a monoton decreasing sequence of positive real numbers such that $\lim_{n \to \infty} w_n = 0$ and $\sum_{n=1}^{\infty} w_n = \infty$. We define $d(w, p) = \left\{ x = \{x_n\} : \sum_{n=1}^{\infty} w_n (x_n^*)^p < \infty \right\}$

where $\{x_n^*\}$ is a monoton decreasing sequence found by rearranging the sequence $\{x_n\}$. It can be proved that d(w, p) is a space that its members are all finite sequences. Further, d(w, p) is an *F*-normed space with respect to

$$||x||_{d(w,p)} = ||x^*||_{w,p}$$

Lemma 2.7 Let $p \ge 1$ and $A = (a_{i,j})$ be the operator on d(w, p) that satisfies

(i) $a_{i,j} \ge 0$ for every i, j, and

(ii)
$$\sum_{i \in M} \sum_{j \in K} a_{i,j} \le \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i,j}$$
 for every subset $M, K \subset N$ that consists of

m, n elements, respectively.

Then for every non negative elemen $x \in d(w, p)$, we have

$$\left\|Ax\right\|_{d(w,p)} \le \left\|Ax^*\right\|_{d(w,p)}$$

Proof: See Lashkaripour R. [2002].

Lemma 2.8 Let $p \ge 1$ and $A = (a_{ij})$ be an operator from d(w, p) into itself such that $a_{ij} \ge 0$ for every *i* and *j*. If for every $x \in d(w, p)$,

$$Ax = \left(\sum_{j=1}^{\infty} a_{ij} x_j\right)^t$$

then the following statements are equivalent.

(a)
$$y_1 \ge y_2 \ge ... \ge 0$$
 whenever $x_1 \ge x_2 \ge ... \ge 0$.
(b) $r_{in} = \sum_{j=1}^n a_{ij}$ is a sequence such that $r_{(i+1)n} \le r_{in}$ for every n

Proof:

(a) \Rightarrow (b): Let $x \in d(w, p)$ be an arbitrary, then $x = (x_1, x_2, ..., x_n, 0, 0, ...)$ for some $n \in N$. If $e_k = (0, ..., 0, 1, 0, 0, ...)$, that is a sequence with the k^{th} -coordinate is equal to 1

and the others are 0, then $x = \sum_{k=1}^{n} x_k e_k$. Further, by the hypothesis we have

$$0 \le y_i - y_{i+1} = \sum_{j=1}^n (a_{ij} - a_{(i+1)j}) x_j$$

(b) \Rightarrow (a): If $x \in d(w, p)$, then $x = (x_1, x_2, ..., x_n, 0, 0, ...)$ for some $n \in N$. For any *i*, we have

$$y_{i} = \sum_{j=1}^{n} a_{i,j} x_{j} = r_{i,1} x_{1} + (r_{i,2} - r_{i,1}) x_{2} + \dots + (r_{i,n} - r_{i,n-1}) x_{n}$$
$$= r_{i,1} (x_{2} - x_{1}) + r_{i,2} (x_{3} - x_{2}) + \dots + r_{i,n} (x_{n} - x_{n-1}).$$

Hence, $y_i \ge y_{i+1} \ge 0$ whenever $x_1 \ge x_2 \ge \dots \ge 0$.

Let $H(\mu)$ be a Hausdorff matrix such that $\sum_{i \in M} \sum_{j \in K} a_{ij} \leq \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}$ for any subset $M, K \subset N$, which consist of m, n elements, respectively. Following Lemma 2.7 and Lemma 2.8, then for any non negative decreasing sequence x we have

$$\left\|Hx\right\|_{d(w,p)} = \left\|Hx\right\|_{w,p}.$$

Further, by using Theorem 2.4, we have the following theorems.

Theorem 2.9 Let p > 1 and $H(\mu)$ be a Hausdorff matrix operator such that $\sum_{i \in M} \sum_{j \in K} a_{ij} \leq \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}$ for any subsets $M, K \subset N$, which consist of m, nelements, respectively. Then $H(\mu)$ maps d(w, p) into itself and

$$\|H\|_{d(w,p)} = \int_{0}^{1} t^{-1/p} d\mu(p)$$

Theorem 2.10 Let $A = (a_{ij})$ be a matrix that satisfies the conditions (i) and (ii) in Lemma 2.7 and $\sum_{i=1}^{\infty} w_i . a_{i1}$ be convergent. If $\{v_n\}$ is a sequence such that

$$\sup \frac{S_n}{V_n} < \infty$$

where $S_n = \sum_{k=1}^n s_k$, $s_n = \sum_{k=1}^\infty w_k \cdot a_{kn}$, and $V_n = \sum_{k=1}^n v_k$, then A is a bounded linear operator from d(v,1) into d(w,1) and

$$\left\|A\right\|_{v,w,1} = \sup \frac{S_n}{V_n}.$$

Proof: Let $x \in d(v,1)$ be sequence such that $x_1 \ge x_2 \ge ... \ge 0$. If $M = \sup \frac{S_n}{V_n}$, then

$$\|Ax\|_{w,1} = \sum_{i=1}^{\infty} w_i \sum_{j=1}^{\infty} a_{i,j} x_j = \sum_{j=1}^{\infty} s_j x_j$$
$$= \sum_{j=1}^{\infty} S_j (x_j - x_{j+1}) \le M \sum_{j=1}^{\infty} V_j (x_j - x_{j+1})$$

Since

$$\|x\|_{\nu,1} = \sum_{j=1}^{\infty} v_j x_j = \sum_{j=1}^{\infty} V_j (x_j - x_{j+1})$$

then

$$||Ax||_{w,1} \le M ||x||_{v,1}$$

This implies $||A||_{v,w,1} \leq M$.

Further, by letting $x_1 = x_2 = ... = x_n = 1$ and $x_{n+k} = 0$ for every $k \in N$, then we have

 $||x||_{v,1} = V_n$ and $||Ax||_{w,1} = S_n$

So, $||A||_{v,w,1} = M$.

3. Concluding Remarks

In this paper, we have succesfully constructed the sequence spaces $l_{\phi}(v)$ and $d(v,\phi)$, which is an *F*-space, respectively. Further, $d(v,\phi)$ is a sequence space where all of its elements are finite sequences. By restricting the function ϕ of the form $\phi(t) = |t|^p$, $1 \le p < \infty$, then we can formulate the upper bound and norm of certain matrix operator on $l_p(v)$ and d(v, p). The works will be continued for matrix operators act on $l_{\phi}(v)$ and $d(v,\phi)$.

4. Acknowledgement

This paper is a part of the 2007 research grant activity funded by the Department of Mathematics, Gadjah Mada University under a contract number 21/JO1.1.28/PL.06/02/07. Therefore, the author would like to thank the Department of Mathematics, Gadjaah Mada University.

References

Jameson G.J.O. and Lashkaripour R., 2000, Lower bounds of operators on weighted l_p

spaces and Lorentz sequence spaces, Glasgow Math. J. 42, 211-223

Jameson G.J.O. and Lashkaripour R., 2002, Norm of certain operators on weighted l_p

spaces and Lorentz sequence spaces, J. Inequality Pure Appl. Math., 3(1), 1 - 17.

- Lashkaripour R., 2002, Operators on Lorentz sequence space II, WSEAS Trans. On Math., 1(1), 16-22.
- Lashkaripour R., 2004, Weighted means matrix on weighted sequence space, WSEAS Trans. On Math., 3(4), 789 793.
- Lashkaripour R., 2005, Transpose of weighted means operators on weighted sequence space, *WSEAS Trans. On Math.*, 4(4), 380 385.
- Pecari J., Peric I., and Roki R, 2001, On bounds for weighted norms for matrices and integral operators, *Linear Algebra and Appl.*, 326, 121 135.