Upper Bound For Matrix Operators On Some Sequence Spaces

Supama
Department of Mathematics, Gadjah Mada University
Yogyakarta 55281 - INDONESIA
Email: supama@ugm.ac.id, maspomo@yahoo.com

Intisari

Di dalam paper ini, akan didiskusikan masalah pencarian batas atas dan norma operator matrik Hausdorff pada beberapa ruang barisan.

Kata kunci: norma-F, fungsi- ϕ, matriks Hausdorff, batas atas.

Abstract

In this paper, we considered the problem of finding the upper bound and the norm of the Hausdorff matrix operator on some sequence spaces.

Keywords: F-norm, ϕ-function, Hausdorff matrix, upper bound.

1. Preliminaries and Some Basic Notions

Operator theory plays an important role in both pure and applied mathematics. Therefore, it always receives a lot of attention from mathematicians from those areas. In this paper, we discuss about the norm of a certain matrix operator on a certain sequence space. The key references are Jameson and Lashkaripour [2000], [2002], Lashkaripour [2002],[2004],[2005], and Pecari et.al [2001].

In this section, we give some basic notions. As usual, R and N denote the real and natural numbers system, respectively. R^{+}denotes the collection of all positive real numbers. The collection of all sequences in R will be denoted by \mathcal{S}.

Let $X \subset \mathcal{S}$ be a linear space over R. A function $\|\|: X \rightarrow R$ is called an F-norm if it satisfies
(i) $\quad\|x\| \geq 0$ for every $x \in X$,

$$
\|x\|=0 \Leftrightarrow x=0,
$$

(ii) $\|x+y\| \leq\|x\|+\|y\|$ for every $x, y \in X$, and
(iii) if $\left\{x_{n}\right\} \subset X$ is a sequence such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$ for some $x \in X$, and $\left\{a_{n}\right\}$ is a sequence of real numbers which converges to some $a \in R$, then $\lim _{n \rightarrow \infty}\left\|a_{n} x_{n}-a x\right\|=0$.

The linear space X equipped with the F-norm $\|\|$, denoted $(X,\| \|)$, is called an F normed space. When the F-norm \|\| has been explicitly known, we write X instead of $(X,\| \|)$. An F-normed space is said to be complete if every Cauchy sequence in the space is convergent. A complete F-normed space is called a Frèchet space or shortly an F-space.

A function $\phi: R \rightarrow R$ is called a ϕ-function if it satisfies
(i) $\phi(x)=0 \Leftrightarrow x=0$,
(ii) $\phi(-x)=\phi(x)$, for every $x \in R$,
(iii) ϕ is increasing on R^{+},
(iv) ϕ is continuous on R, and
(v) $\lim _{x \rightarrow \infty} \phi(x)=\infty$.

A ϕ-function ϕ is said to satisfy a δ_{2}-condition if there exists a real number $M>0$ such that $\phi(2 x) \leq M \phi(x)$ for every $x \geq 0$. For any sequence of positive numbers $v=\left\{v_{n}\right\}$ and ϕ-function ϕ that satisfies δ_{2}-condition, we define

$$
\begin{aligned}
& l_{\phi}=\left\{\left\{x_{n}\right\} \in \mathcal{S}: \sum_{n=1}^{\infty} \phi\left(x_{n}\right)<\infty\right\}, \\
& l_{\phi}(v)=\left\{\left\{x_{n}\right\} \in \mathcal{S}: \sum_{n=1}^{\infty} v_{n} \cdot \phi\left(x_{n}\right)<\infty\right\} .
\end{aligned}
$$

We observe that l_{ϕ} and $l_{\phi}(v)$ are complete F-norm spaces with respect to $\left\|\left\|\|_{\phi}\right.\right.$ and $\left.\|.\right\| \|_{\phi, v}$, respectively, where

$$
\|x\|_{\phi}=\sum_{n=1}^{\infty} \phi\left(x_{n}\right) \quad\|x\|_{\phi, v}=\sum_{n=1}^{\infty} v_{n} \cdot \phi\left(x_{n}\right) .
$$

In case, $\phi(t)=|t|^{p}, 1 \leq p<\infty$, we write $l_{p}(v)$ instead of $l_{\phi}(v)$.
Let $w=\left\{w_{n}\right\}$ be a decreasing positive sequence of real numbers such that $\lim _{n \rightarrow \infty} w_{n}=0$ and $\sum_{n=1}^{\infty} w_{n}=\infty$. We define

$$
d(w, p)=\left\{x=\left\{x_{n}\right\}: \sum_{n=1}^{\infty} w_{n}\left(x_{n}^{*}\right)^{p}<\infty\right\}
$$

where $\left\{x_{n}^{*}\right\}$ is a decreasing sequence which can be found by rearranging $\left\{\left|x_{n}\right|\right\}$. It can be shown that $d(w, p)$ is a space of all sequences with finitely non-zero elements. Further, $d(w, p)$ is an F-normed space with respect to

$$
\|x\|_{d(w, p)}=\left\|x^{*}\right\|_{w, p} .
$$

2. Matrix Operators

Let $\left\{a_{n}\right\}$ be a sequence of real numbers with $a_{1}=1$. For any $n \in N \cup\{0\}$, we define the operator Δ^{n} as follows

$$
\begin{aligned}
& \Delta^{0} a_{k}=a_{k}, \Delta^{1} a_{k}=a_{k}-a_{k+1}, \text { and } \\
& \Delta^{n} a_{k}=\Delta^{n-1}\left(\Delta^{1} a_{k}\right), n=2,3,4, \ldots
\end{aligned}
$$

Further, the matrix $H=\left(h_{i j}\right)$, where

$$
h_{i j}=\left\{\begin{array}{cl}
C_{j-1}^{i-1} \cdot \Delta^{i-j} a_{j}, & 1 \leq j \leq i \\
0, & j>i
\end{array}\right.
$$

is called the Hausdorff matrix.
Let μ be a probability measure on $[0,1]$. For any $n \in N$, we define the sequence $\left\{a_{n}\right\}$ by

$$
a_{n}=\int_{0}^{1} x^{n-1} d \mu(x), \quad n=1,2,3, \ldots
$$

then we get the Hausdorff matrix $H(\mu)=\left(h_{i j}\right)$, with

$$
h_{i j}=\left\{\begin{array}{cl}
C_{j-1}^{i-1} \cdot \int_{0}^{1} x^{j-1}(1-x)^{i-j} d \mu(x), & 1 \leq j \leq i \\
0 & , \\
0, i>i
\end{array}\right.
$$

The followings are some kind of Hausdorff matrices:

1. $C(\alpha)=H\left(\mu_{\alpha}\right)$, where $d \mu_{\alpha}(t)=\alpha(1-t)^{\alpha-1}$,
2. $H_{0}(\alpha)=H\left(\mu_{\alpha}\right)$, where $d \mu_{\alpha}(t)=\frac{|\log t|^{\alpha-1}}{\Gamma(\alpha)} d t$, and
3. $G(\alpha)=H\left(\mu_{\alpha}\right)$, where $d \mu_{\alpha}(t)=\alpha t^{\alpha-1} d t$,
where $\alpha>0$ is any real number. The matrices $C(\alpha), H_{0}(\alpha)$, and $G(\alpha)$ are called a Cesaro, Holder, and Gamma matrix respectively.

Let $v=\left\{v_{n}\right\}$ and $w=\left\{w_{n}\right\}$ be sequences of positive numbers. We consider the matrix operator $A: l_{\phi}(v) \rightarrow l_{\phi}(w)$

$$
\begin{aligned}
& A x=y=\left\{y_{n}\right\}, \\
& y_{n}=\sum_{j=1}^{\infty} a_{n, j} x_{j}
\end{aligned}
$$

The norm of A is given by

$$
\|A\|=\sup \left\{\mid A x\left\|_{\phi, w}: x \in l_{\phi}(v),\right\| x \|_{\phi, v} \leq 1\right\} .
$$

We observe the following theorem.

Theorem 2.1 Let $w=\left\{w_{n}\right\}$ be a decreasing sequence of positive real numbers. If the Hausdorff matrix operator $H(\mu)$ maps the space $l_{\phi}(w)$ into itself, then

$$
\|H x\|_{\phi, w} \leq \sup _{k \leq n} \frac{w_{n}}{w_{k}}\|x\|_{\phi, w}
$$

Proof: For simplicity, we write $H(\mu)=H$. Take any $x \in l_{\phi}(w)$, then

$$
\begin{aligned}
\|H x\|_{\phi, w} & =\sum_{i=1}^{\infty} w_{i} \cdot \phi\left(\sum_{j=1}^{i} C_{j-1}^{i-1} \cdot\left(\int_{0}^{1} t^{j-1}(1-t)^{i-j} d \mu(t)\right) x_{j}\right) \\
& \leq \sum_{i=1}^{\infty} w_{i} \sum_{j=1}^{\infty} \phi\left(x_{j}\right) \\
& \leq \sup _{k \leq n} \frac{w_{n}}{w_{k}} \sum_{j=1}^{\infty} w_{j} \cdot \phi\left(x_{j}\right)=\sup _{k \leq n} \frac{w_{n}}{w_{k}} \cdot\|x\|_{\phi, w} .
\end{aligned}
$$

As a straight consequence, we then have the following corollary.

Corollary 2.2 If the Hausdorff matrix operator $H(\mu)$ maps the space l_{ϕ} into itself, then

$$
\|H\|_{\phi, 1} \leq 1
$$

In case, the ϕ-function ϕ is of the form $\phi(x)=|x|^{p}, 1<p<\infty$, then we get inequalities for the Hausdorff matrix operator H.

Theorem 2.3 Let $v=\left\{v_{n}\right\}$ and $w=\left\{w_{n}\right\}$ be decreasing sequences of positive numbers, with $v_{1}=1$. If the Hausdorff matrix operator $H(\mu)$ maps $l_{p}(v)$ into $l_{p}(w), 1<p<\infty$, then

$$
\left(\inf \frac{w_{n}}{v_{n}}\right)^{1 / p} \int_{0}^{1} t^{-1 / p} d \mu(t) \leq\|H\| \leq\left(\sup \frac{w_{n}}{v_{n}}\right)^{1 / p} \int_{0}^{1} t^{-1 / p} d \mu(t)
$$

Proof: We write $H(\mu)=H$ for the simplicity. Let $x \in l_{p}(v)$, then

$$
\begin{aligned}
\|H x\|_{p, w}^{p} & =\sum_{i=1}^{\infty} w_{i} \cdot\left(\sum_{j=1}^{i} C_{j-1}^{i-1} \cdot\left(\int_{0}^{1} t^{j-1}(1-t)^{i-j} d \mu(t)\right) x_{j}\right)^{p} \\
& \leq \sum_{i=1}^{\infty} \sum_{j=1}^{i} w_{j} \cdot\left(C_{j-1}^{i-1}\left(\int_{0}^{1} t^{j-1}(1-t)^{i-j} d \mu(t)\right) x_{j}\right)^{p} \\
& \leq\left(\int_{0}^{1} t^{-1 / p} d \mu(t)\right)^{p} \sum_{i=1}^{\infty} \frac{w_{i}}{v_{i}} \cdot v_{i} \cdot x_{i}^{p} \\
& \leq \sup \frac{w_{n}}{v_{n}} \cdot\left(\int_{0}^{1} t^{-1 / p} d \mu(t)\right)^{p} \sum_{i=1}^{\infty} v_{i} \cdot x_{i}^{p} \\
& =\sup \frac{w_{n}}{v_{n}} \cdot\left(\int_{0}^{1} t^{-1 / p} d \mu(t)\right)^{p}\|x\|_{v, p}^{p} .
\end{aligned}
$$

These prove the right hand side of the inequality. Further, we are going to prove the left hand side of the inequality.

Let $0<\delta<\frac{1}{p}, x_{n}=(n)^{-(1 / p)-\delta}$, and $\varepsilon \in(0,1)$. It is clear that $\left\{x_{n}\right\} \in l_{p}$. Since $0<v_{n} \leq 1$ for every $n \in N$, then $\left\{x_{n}\right\} \in l_{p}(v)$. Take α and N such that

$$
\begin{aligned}
& \left(1+\frac{1}{\alpha}\right)^{-2 / p}>1+\varepsilon, \\
& \int_{\alpha / n}^{1} t^{-1 / p} d \mu(t)>(1-\varepsilon) \int_{0}^{1} t^{-1 / p} d \mu(t), n \geq N, \text { and } \\
& \sum_{k=N}^{\infty} w_{k} x_{k}^{p}>(1-\varepsilon) \sum_{k=1}^{\infty} w_{k} x_{k}^{p},
\end{aligned}
$$

then

$$
\begin{aligned}
(H x)_{n} & =\sum_{k=1}^{n} C_{k-1}^{n-1}\left(\int_{0}^{1} t^{k-1}(1-t)^{n-k} d \mu(t)\right) x_{k} \\
& \geq(1-\varepsilon)^{2} x_{n} \cdot \int_{0}^{1} t^{-1 / p} d \mu(t), \quad n \geq N .
\end{aligned}
$$

Hence

$$
w_{n}^{1 / p}(H x)_{n} \geq(1-\varepsilon)^{2} w_{n}^{1 / p} x_{n} \cdot \int_{0}^{1} t^{-1 / p} d \mu(t), \quad n \geq N .
$$

Further,

$$
\begin{aligned}
&\|H x\|_{p, w}^{p}= \sum_{n=N}^{\infty} w_{n}(H x)_{n}^{p} \\
& \geq \geq(1-\varepsilon)^{2 p} \cdot\left(\int_{0}^{1} t^{-1 / p} d \mu(t)\right)^{p} \sum_{n=1}^{\infty} w_{n} x_{n}^{p} \\
& \geq \geq(1-\varepsilon)^{2 p+1} \cdot\left(\int_{0}^{1} t^{-1 / p} d \mu(t)\right)^{p} \sum_{n=1}^{\infty} w_{n} x_{n}^{p} \\
& \geq(1-\varepsilon)^{2 p+1} \cdot\left(\int_{0}^{1} t^{-1 / p} d \mu(t)\right)^{p} \sum_{n=1}^{\infty} \frac{w_{n}}{v_{n}} v_{n} x_{n}^{p} \\
& \geq \inf \frac{w_{n}}{v_{n}}(1-\varepsilon)^{2 p+1} \cdot\left(\int_{0}^{1} t^{-1 / p} d \mu(t)\right)^{p}\|x\|_{v, p}^{p} .
\end{aligned}
$$

These implies

$$
\|H x\|_{p, w}^{p} \geq \inf \frac{w_{n}}{v_{n}} \cdot\left(\int_{0}^{1} t^{-1 / p} d \mu(t)\right)^{p}\|x\|_{v, p}^{p}
$$

If in the Theorem 2.4, we take $v_{n}=w_{n}$ for every n, then we get the following corollaries.

Corollary 2.5 If the Hausdorff matrix $H(\mu)$ maps the space $l_{p}(w)$ into itself, then

$$
\|H\|_{p, w}=\int_{0}^{1} t^{-1 / p} d \mu(t)
$$

Corollary 2.6 Let $1<p, q<\infty$ be such that $\frac{1}{p}+\frac{1}{q}=1$. If the matrices $C(\alpha)$, $H_{0}(\alpha)$, and $G(\alpha)$ map the space $l_{p}(w)$ into itself, then

$$
\begin{aligned}
& \|C(\alpha)\|_{w, p}=\frac{\Gamma(\alpha+1) \Gamma(1 / q)}{\Gamma(\alpha+1 / q)}, \quad \alpha>0 \\
& \left\|H_{0}(\alpha)\right\|_{w, p}=\frac{1}{\Gamma(\alpha)} \int_{0}^{1} t^{-1 / p}|\log t|^{\alpha-1} d t, \quad \alpha>0 \\
& \|G(\alpha)\|_{w, p}=\frac{\alpha p}{\alpha p-1}, \quad \alpha p>1 .
\end{aligned}
$$

Let $w=\left\{w_{n}\right\}$ be a monoton decreasing sequence of positive real numbers such that $\lim _{n \rightarrow \infty} w_{n}=0$ and $\sum_{n=1}^{\infty} w_{n}=\infty$. We define

$$
d(w, p)=\left\{x=\left\{x_{n}\right\}: \sum_{n=1}^{\infty} w_{n}\left(x_{n}^{*}\right)^{p}<\infty\right\}
$$

where $\left\{x_{n}^{*}\right\}$ is a monoton decreasing sequence found by rearranging the sequence $\left\{x_{n} \mid\right\}$. It can be proved that $d(w, p)$ is a space that its members are all finite sequences. Further, $d(w, p)$ is an F-normed space with respect to

$$
\|x\|_{d(w, p)}=\left\|x^{*}\right\|_{w, p} .
$$

Lemma 2.7 Let $p \geq 1$ and $A=\left(a_{i, j}\right)$ be the operator on $d(w, p)$ that satisfies
(i) $a_{i, j} \geq 0$ for every i, j, and
(ii) $\sum_{i \in M} \sum_{j \in K} a_{i, j} \leq \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i, j}$ for every subset $M, K \subset N$ that consists of m, n elements, respectively.
Then for every non negative elemen $x \in d(w, p)$, we have

$$
\|A x\|_{d(w, p)} \leq\left\|A x^{*}\right\|_{d(w, p)} .
$$

Proof: See Lashkaripour R. [2002].
Lemma 2.8 Let $p \geq 1$ and $A=\left(a_{i j}\right)$ be an operator from $d(w, p)$ into itself such that $a_{i j} \geq 0$ for every i and j. If for every $x \in d(w, p)$,

$$
A x=\left(\sum_{j=1}^{\infty} a_{i j} x_{j}\right)^{t}
$$

then the following statements are equivalent.
(a) $y_{1} \geq y_{2} \geq \ldots \geq 0$ whenever $x_{1} \geq x_{2} \geq \ldots \geq 0$.
(b) $r_{i n}=\sum_{j=1}^{n} a_{i j}$ is a sequence such that $r_{(i+1) n} \leq r_{i n}$ for every n.

Proof:

(a) $\Rightarrow(\mathrm{b}):$ Let $x \in d(w, p)$ be an arbitrary, then $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0, \ldots\right)$ for some $n \in N$. If $e_{k}=(0, \ldots, 1,0,0, \ldots)$, that is a sequence with the $k^{\text {th }}$-coordinate is equal to 1 and the others are 0 , then $x=\sum_{k=1}^{n} x_{k} e_{k}$. Further, by the hypothesis we have

$$
0 \leq y_{i}-y_{i+1}=\sum_{j=1}^{n}\left(a_{i j}-a_{(i+1) j}\right) x_{j} .
$$

(b) \Rightarrow (a) : If $x \in d(w, p)$, then $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0, \ldots\right)$ for some $n \in N$. For any i, we have

$$
\begin{aligned}
y_{i}=\sum_{j=1}^{n} a_{i, j} x_{j} & =r_{i, 1} x_{1}+\left(r_{i, 2}-r_{i, 1}\right) x_{2}+\ldots+\left(r_{i, n}-r_{i, n-1}\right) x_{n} \\
& =r_{i, 1}\left(x_{2}-x_{1}\right)+r_{i, 2}\left(x_{3}-x_{2}\right)+\ldots+r_{i, n}\left(x_{n}-x_{n-1}\right) .
\end{aligned}
$$

Hence, $y_{i} \geq y_{i+1} \geq 0$ whenever $x_{1} \geq x_{2} \geq \ldots \geq 0$.

Let $H(\mu)$ be a Hausdorff matrix such that $\sum_{i \in M} \sum_{j \in K} a_{i j} \leq \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}$ for any subset $M, K \subset N$, which consist of m, n elements, respectively. Following Lemma 2.7 and Lemma 2.8, then for any non negative decreasing sequence x we have

$$
\|H x\|_{d(w, p)}=\|H x\|_{w, p} .
$$

Further, by using Theorem 2.4, we have the following theorems.

Theorem 2.9 Let $p>1$ and $H(\mu)$ be a Hausdorff matrix operator such that $\sum_{i \in M} \sum_{j \in K} a_{i j} \leq \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}$ for any subsets $M, K \subset N$, which consist of m, n elements, respectively. Then $H(\mu)$ maps $d(w, p)$ into itself and

$$
\|H\|_{d(w, p)}=\int_{0}^{1} t^{-1 / p} d \mu(p)
$$

Theorem 2.10 Let $A=\left(a_{i j}\right)$ be a matrix that satisfies the conditions (i) and (ii) in Lemma 2.7 and $\sum_{i=1}^{\infty} w_{i} \cdot a_{i 1}$ be convergent. If $\left\{v_{n}\right\}$ is a sequence such that

$$
\sup \frac{S_{n}}{V_{n}}<\infty
$$

where $S_{n}=\sum_{k=1}^{n} s_{k}, s_{n}=\sum_{k=1}^{\infty} w_{k} \cdot a_{k n}$, and $V_{n}=\sum_{k=1}^{n} v_{k}$, then A is a bounded linear operator from $d(v, 1)$ into $d(w, 1)$ and

$$
\|A\|_{v, w, 1}=\sup \frac{S_{n}}{V_{n}}
$$

Proof: Let $x \in d(v, 1)$ be sequence such that $x_{1} \geq x_{2} \geq \ldots \geq 0$. If $M=\sup \frac{S_{n}}{V_{n}}$, then

$$
\begin{aligned}
\|A x\|_{w, 1} & =\sum_{i=1}^{\infty} w_{i} \sum_{j=1}^{\infty} a_{i, j} x_{j}=\sum_{j=1}^{\infty} s_{j} x_{j} \\
& =\sum_{j=1}^{\infty} S_{j}\left(x_{j}-x_{j+1}\right) \leq M \sum_{j=1}^{\infty} V_{j}\left(x_{j}-x_{j+1}\right) .
\end{aligned}
$$

Since

$$
\|x\|_{v, 1}=\sum_{j=1}^{\infty} v_{j} x_{j}=\sum_{j=1}^{\infty} V_{j}\left(x_{j}-x_{j+1}\right)
$$

then

$$
\|A x\|_{w, 1} \leq M\|x\|_{v, 1} .
$$

This implies $\|A\|_{v, w, 1} \leq M$.
Further, by letting $x_{1}=x_{2}=\ldots=x_{n}=1$ and $x_{n+k}=0$ for every $k \in N$, then we have

$$
\|x\|_{v, 1}=V_{n} \text { and }\|A x\|_{w, 1}=S_{n} .
$$

So, $\|A\|_{v, w, 1}=M$.

3. Concluding Remarks

In this paper, we have succesfully constructed the sequence spaces $l_{\phi}(v)$ and $d(v, \phi)$, which is an F-space, respectively. Further, $d(v, \phi)$ is a sequence space where all of its elements are finite sequences. By restricting the function ϕ of the form $\phi(t)=|t|^{p}, 1 \leq p<\infty$, then we can formulate the upper bound and norm of certain matrix operator on $l_{p}(v)$ and $d(v, p)$. The works will be continued for matrix operators act on $l_{\phi}(v)$ and $d(v, \phi)$.

4. Acknowledgement

This paper is a part of the 2007 research grant activity funded by the Department of Mathematics, Gadjah Mada University under a contract number 21/JO1.1.28/PL.06/02/07. Therefore, the author would like to thank the Department of Mathematics, Gadjaah Mada University.

References

Jameson G.J.O. and Lashkaripour R., 2000, Lower bounds of operators on weighted l_{p} spaces and Lorentz sequence spaces, Glasgow Math. J. 42, 211-223
Jameson G.J.O. and Lashkaripour R., 2002, Norm of certain operators on weighted l_{p} spaces and Lorentz sequence spaces, J. Inequality Pure Appl. Math., 3(1), 1 - 17.
Lashkaripour R., 2002, Operators on Lorentz sequence space II, WSEAS Trans. On Math., 1(1), 16 - 22.
Lashkaripour R., 2004, Weighted means matrix on weighted sequence space, WSEAS Trans. On Math., 3(4), 789 - 793.
Lashkaripour R., 2005, Transpose of weighted means operators on weighted sequence space, WSEAS Trans. On Math., 4(4), 380 - 385.
Pecari J., Peric I., and Roki R, 2001, On bounds for weighted norms for matrices and integral operators, Linear Algebra and Appl., 326, 121-135.

