Ely Afridiana Kuncoro(1), Arief Budiman(2*), Joko Waluyo(3)

(1) Master Program of System Engineering, Faculty of Engineering, Universitas Gadjah Mada
(2) Departemen of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada
(3) Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada
(*) Corresponding Author


Energy needs are increasing rapidly along with population growth, increasing population activity, and massive development in technology. However, a current energy source is mainly from fossil energy. This condition is inversely proportional to fossil energy stock, decreasing year by year as a natural condition of non-renewable energy. On the other hand, fossil energy damages the environment by its pollution, such as deforestation and air and atmospheric pollution in the form of greenhouse gas emissions. For this reason, the world needs another source of energy that could replace fossil energy as a source and is also environmentally friendly. New and renewable energy could be the solution.

Indonesia has plenty amount of new and renewable energy potential. However, renewable energy is weather-dependent, thus requiring storage technology to store the energy. The current common storage technology is battery technology. This technology has some weaknesses: limited capacity, high cost, less flexibility, expensive, and short lifetime. Another storage technology with high flexibility, easy transport, high amount capacity, long lifetime, and wide usage is needed. Hydrogen storage appears to meet all these requirements.

This study aimed to calculate the optimum potential of photovoltaic power stations at Baru Pandansimo Beach of Bantul, Yogyakarta, as an energy source to produce hydrogen as a storage energy system. The simulations are done using HOMER software were carried out in three photovoltaic power station scenarios: fixed-tilt, single-axis tracker, and dual-axis tracker, and showed that the fixed-tilt photovoltaic power station scenario is the most optimal design and architecture. With total capacity reaching 7.8 MWp potential to be built at Baru Pandansimo, it could generate 11,657,704 KWh/year electrical energy with an NPC value of USD 8.29 M, and a COE of 0.0420 USD/KWh. This electrical energy could produce 213,288.06 kilograms of H2 at a 2.3 USD/kg production cost.


Full Text:



ABB, 2010, Technical Application Papers No. 10–Photovoltaic plants.

Ali, A. M., Mustafa, S. S., and Mutlag, A. H., 2016, Design optimization of solar power system with respect to temperature and sun tracking. In 2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA) (pp. 1-5). IEEE.

Balakrishnan, J., 2007, Fuel cell technology. 2007 Third international conference on Information and automation for sustainability (pp. 159-164). IEEE.

Bhattacharyya, R., Misra, A., and Sandeep, K. C., 2017, Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: conceptual design and analysis. Energy Conversion and Management, 133, 1-13.

Cole, S., Van Hertem, D., Meeus, L., and Belmans, R., 2005, SWOT analysis of utility side energy storage of technologies. 5th WSEAS/IASME International conference on electric power systems, high voltages, electric machines (pp. 16-18).

Esdm.go.id., 2012, Matahari untuk PLTS di Indonesia. Diakses pada 19 Januari 2020, dari https://www.esdm.go.id/id/media-center/arsip-berita/matahari-untuk-plts-di-indonesia.

ESDM. ,2017, Kajian penyediaan dan pemanfaatan migas, batubara, EBT, dan listrik 2017. Jakarta: Pusat Data Dan Teknologi Informasi Energi Dan Sumber Daya Mineral Kementerian Energi Dan Sumber Daya Mineral.

ESDM., 2017, Peraturan Menteri ESDM No. 39 Tahun 2017. Pelaksanaan kegiatan fisik pemanfaatan energi baru dan energi terbarukan serta konservasi Energi. Jakarta: Kementerian Energi Dan Sumber Daya Mineral Kementerian Energi Dan Sumber Daya Mineral.

ESDM., 2020, Startup EBT kian diminati, jenis energi ini banyak dilirik. Diakses pada 19 Januari 2020, dari https://www.esdm.go.id/id/media-center/arsip-berita/startup-ebt-kian-diminati-jenis-energi-ini-banyak-dilirik.

Fu, R., Feldman, D. J., and Margolis, R. M., 2018, US solar photovoltaic system cost benchmark: Q1 2018 (No. NREL/TP-6A20-72399). National Renewable Energy Lab.(NREL), Golden, CO (United States).

Gilman, P., Lambert, T., 2006, HOMER The Micropower Optimization ModelSoftware Started Guide, National Renewable Energi Laboratory of United States Government.

Gultom, T. T., 2015, Pemanfaatan photovoltaic sebagai pembangkit listrik tenaga surya. Journal Mudira Indure, 1, 33-42.

KLHK., 2018, Laporan inventarisasi gas rumah kaca dan monitoring, Pelaporan verifikasi tahun 2018. Jakarta: Kementerian Lingkungan Hidup dan Kehutanan, Direktorat Jenderal Pengendalian Perubahan Iklim, Direktorat Inventarisasi Gas Rumah Kaca, Monitoring, Pelaporan dan Verifikasi.

Mahendran, M., Ong, H. L., Lee, G. C., and Thanikaikumaran, K., 2013, An experimental comparison study between single-axis tracking and fixed photovoltaic solar panel efficiency and power output: Case study in east coast Malaysia. Sustainable Development Conference, Bangkok, Thailand.

Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. J., and Ulgiati, S., 2018, Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies. Environments, 5(2), 24.

Myori, D. E., Mukhaiyar, R., and Fitri, E., 2019, Sistem tracking cahaya matahari pada photovoltaic. INVOTEK: Jurnal Inovasi Vokasional dan Teknologi, 19(1), 9-16.

Nicita, A., Maggio, G., Andaloro, A. P. F., and Squadrito, G., 2020, Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. International Journal of Hydrogen Energy, 45(20), 11395-11408.

Ong, S., Campbell, C., Denholm, P., Margolis, R., and Heath, G., 2013, Land-use requirements for solar power plants in the United States (No. NREL/TP-6A20-56290). National Renewable Energy Lab.(NREL), Golden, CO (United States).

Minister of Energy and Mineral Resources Regulation No. 19 of 2016., Pembelian Tenaga Listrik Oleh PT Perusahaan Listrik Negara (Persero).

Rahardjo, I., and Fitriana, I., 2005, Analisis potensi pembangkit listrik tenaga surya di Indonesia. Strategi penyediaan listrik nasional dalam rangka mengantisipasi pemanfaatan PLTU Batubara Skala Kecil, PLTN, dan Energi Terbarukan. P3TKKE, BPPT, Januari.

Sahin, M. E., 2020, A photovoltaic powered electrolysis converter system with maximum power point tracking control. International Journal of Hydrogen Energy, 45(16), 9293-9304.

Salem, F., and Awadallah, M. A., 2016, Detection and assessment of partial shading in photovoltaic arrays. Journal of Electrical Systems and Information Technology, 3(1), 23-32.

Setiawan, I. A., Kumara, I. S., and Sukerayasa, I. W., 2014, Analisis unjuk kerja pembangkit listrik tenaga surya (PLTS) satu MWP terinterkoneksi jaringan di Kayubihi, Bangli. Majalah Ilmiah Teknologi Elektro, 13(1).

Sharaf, O. Z., and Orhan, M. F., 2014, An overview of fuel cell technology: Fundamentals and applications. Renewable and sustainable energy reviews, 32, 810-853.

Sianipar, R. 2014. Dasar Perencanaan Pembangkit Listrik Tenaga Surya. Jakarta, Universitas Trisakti, ISSN 1412-0372.

Simatupang, S., Susilo, B., and Hermanto, M. B., 2012, Rancang bangun dan uji coba solar tracker pada panel surya berbasis mikrokontroler ATMega16. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 1(1), 55-59.

Sofianita, R., Surjosatyo, A., and Siregar, S. R., 2019, Solution concerning climate change and utilization of Wind Turbine and Floating PV in Coastal Area. ASEAN Journal of Community Engagement, 3(2), 8.

Stansberry, J., Mejia, A. H., Zhao, L., and Brouwer, J., 2017, Experimental analysis of photovoltaic integration with a proton exchange membrane electrolysis system for power-to-gas. International Journal of Hydrogen Energy, 42(52), 30569-30583.

Usman, M.K., 2013, “Reevaluasi keluaran daya dan optimalisasi pembangkit listrik tenaga hibrid di Kawasan Pantai Baru Pandansimo”, Program Studi Magister Teknik Sistem, Program Pascasarjana Fakultas Teknik, Universitas Gadjah Mada, Tesis.

DOI: https://doi.org/10.22146/ajse.v5i2.72462

Article Metrics

Abstract views : 791 | views : 850


  • There are currently no refbacks.

Copyright (c) 2021 ASEAN Journal of Systems Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ASEAN Journal of Systems Engineering (AJSE) 
P-ISSN: 2338-2309 || E-ISSN: 2338-2295
Master in Systems Engineering
Faculty of Engineering
Universitas Gadjah Mada
Jl. Teknika Utara No.3, Barek, Yogyakarta, Indonesia 55281 
Website: https://journal.ugm.ac.id/ajse
Email: jurnalajse@gmail.com | ajse@ugm.ac.id