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ABSTRACT 

Most surfactants are made from petrochemicals, posing significant environmental concerns due to the non-
biodegradable and non-renewable nature. To address this challenge, surfactants from biodegradable, non-toxic, 
and harmless materials are required, such as Fatty Acid Methyl Ester (FAME) derived from palm oil. Therefore, 
this research aimed to investigate the effect of reaction tempetarures and durations as well as the interactions on 
the yield of FAME surfactants. The characteristics of the highest yield of FAME surfactants were also examined, 
including HLB (hydrophilic-lipophilic balance) value, surface tension, CMC (critical micelles concentration), density, 
and pH values. The study was conducted using Completely Randomized Factorial Design with three (3) factors, 
namely temperature (50 and 60 °C), reaction duration (60, 90, and 120 minutes), and the interaction. The results 
showed that the highest yield of 82.43% was produced at an interaction reaction temperature of 60 °C and a 
duration of 120 minutes. The characteristics of surfactants obtained were HLB value of 5.47, surface tension of 
30.49 dyne/cm, capable of reducing surface tension by 73.20% (from 72.80 to 19.52 dyne/cm), CMC, density and 
pH values of 1.50% (v/v), 0.8757 g/cm3, and 6.86, respectively. These characteristics suggested that FAME has 
the potential for application as a water-in-oil (w/o) emulsifier. Moreover, the results could be applied to produce 
biodegradable surfactants using tropical oils through easy and simple technology.
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INTRODUCTION 

Surfactants are unique chemical compounds 
characterized by both hydrophilic and lipophilic 
groups in a single molecule. This unique property 
enables the formation of a monolayer at interfaces 
and shows surface activity in heterogeneous mixtures. 
Although surfactants are commonly derived from 
petrochemicals, namely petroleum, the use of these 
resources proves challenging in terms of environmental 
degradation (non-biodegradable) and are categorized 

as non-renewable resources (Akbari et al., 2018). 
Currently, surfactants sourced from renewable raw 
materials (RRMs) such as oleochemicals (plants, 
animals, and microorganisms) are being developed to 
meet consumer demand for more natural products. 
These materials conserve fossil resources and 
possess positive environmental impact, including 
easily degradable (biodegradable), non-toxic or with 
low toxicity, and harmless to human health. Among 
surfactants derived from oleochemicals, fatty acid 
methyl ester (FAME) is widely recognized due to the 
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distinctive characteristics (Berghuis et al., 2022; Rabiu 
et al., 2018). 

FAME is obtained through a transesterification 
reaction between oil, serving as source of fatty acid, 
and methanol, facilitated by a catalyst. During this 
process, palm oil is selected as the raw material due 
to several attributes, including renewable natural 
resources, biodegradable, more economical, readily 
available, and a yield reaching 90.34% (Hutami and 
Ayu, 2015). The production of FAME can be influenced 
by several factors, such as the type of base catalyst, 
temperature, and reaction duration. Synthesis of 
FAME from palm oil using KOH and NaOH catalysts 
at temperatures of 40, 50, and 60 °C for 1, 2, and 3 
hours has been conducted by Damayanti et al. (2013). 
The optimum synthesis using KOH catalyst was at 50 
°C for 2 hours, and at 60°C for 1 hour during the use 
of NaOH catalyst. Jimmy et al. (2022) produced FAME 
from palm oil at a reaction temperature of 60°C for 1, 
2, 3, and 4 hours using KOH and NaOH base catalysts. 
The results showed that the use of KOH catalyst was 
more effective, producing the highest yield at a reaction 
duration of 2 hours. The research showed also that an 
increase in reaction temperature led to a corresponding 
rise in effective collision frequency, along with the yield. 
However, at high temperatures (≥70 °C), the yield 
decreased due to the reduction in methanol caused by 
evaporation (Prihanto et al., 2013). By using a longer 
reaction duration FAME yield increased due to a rise in 
the number of collisions between reactant molecules. An 
excessively long reaction duration of 3 hours was found 
to decrease the yield due to the formation of soap from 
the saponification reaction between residual free fatty 
acid and the catalyst (Mandei et al., 2020). Despite the 
numerous investigations, there is no information on the 
effect of reaction temperature (50 and 60 °C), reaction 
duration (60, 90, and 120 minutes), and the interactions 
on FAME production from palm oil with KOH catalyst. 
This information is needed to confirm the influence of 
temperature and reaction duration, serving as a basis 
for optimizing FAME from palm oil using KOH catalyst.

Based on the background above, this research aimed 
to investigate the influence of reaction temperature (50 
and 60 °C), reaction duration (60, 90, and 120 minutes), 
and the interactions on FAME production from palm oil 
with KOH catalyst. Furthermore, FAME surfactants with 
the highest yield were characterized by measuring values 
of HLB (hydrophilic-lipophilic balance), surface tension, 
CMC (critical micelle concentration), density, and pH. 
The characterization was carried out to determine the 
application of FAME, which depends on the evaluated 
properties (Sampepana et al., 2015; Sarubbo et al., 
2022; Shi et al., 2019; Wu et al., 2021).

METHODS

Materials

The materials used for FAME production included 
“KOI” brand palm cooking oil with a manufacturing 
date of December 20, 2020, obtained from one of 
the minimarkets in Pasuruan, East Java. Chemical 
reagents such as methanol, KOH, MgSO4, and NaHCO3 
were obtained from Merck (Darmstadt, Germany). The 
materials used for measuring surface tension, density, 
and pH included distilled water, FAME samples, and 
solutions of FAME with various concentrations, while all 
reagents used were of analytical grade.

FAME Preparation 

The production of FAME followed the method 
described by Damayanti et al. (2013). Briefly, 1% 
by weight of KOH catalyst was dissolved in 50 mL 
methanol, followed by the addition of 90.5 g palm. 
The mixture was refluxed at temperatures of 50 and 
60 °C for 60, 90, and 120 minutes, which was left 
to stand for 2 hours in a separating funnel. After 
separation, the upper phase formed the methyl ester 
layer, which was washed using 50 mL of saturated 
NaHCO3 solution, and allowed to stand for 2 hours until 
separation. To the obtained upper phase, 1 g MgSO4 
was added, centrifuged, and the collected supernatant 
constituted FAME. Quantification was carried out for 
methyl ester (ME) content using the formula based 
on the Indonesian National Standard (SNI) 7182:2015 
on biodiesel (BSN, 2015) (Equation 1). FAME with 
the highest yield (determined using equation 2) was 
subjected to characterization in the subsequent stage.
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Evaluation of FAME Surfactants Characteristics

Surface tension test

Surface tension testing was conducted using the 
capillary tube method described by Wardana et al., 
(2019). Initially, density testing was performed on 
distilled water using a pycnometer (Iwaki, Japan). A 
total of 100 mL distilled water was poured into a petri 
dish with a diameter of 90 mm, followed by the insertion 
of a capillary tube with a diameter of 3 mm vertically 
and straight without touching the bottom of the dish. 
The rise of water in the capillary tube was measured 
at room temperature (25±2 °C). Subsequently, testing 
was carried out on FAME solutions with concentrations 
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of 0.05%, 0.15%, 0.25%, 0.5%, 0.75%, 1%, 1.25%, 
1.5%, 1.75%, and 2%, followed by surface tension 
calculation using Equation 3.

Surface tension = ½ × r × h × ρ × g	 (Equation 3)

Where: r = capillary tube radius (cm), h = height of 
rise (cm), ρ = liquid density (g/cm3), and g = gravity 
(cm/s2).

CMC value

CMC value was determined by referring to 
Wardana et al. (2019), which included creating a graph 
between surfactants concentration (x-axis) and surface 
tension value (y-axis). The point where the addition of 
surfactants concentration reached a constant surface 
tension value showed CMC value in % (v/v).

HLB value 

HLB value was determined based on Wardana et 
al. (2019), with calculations using CMC values obtained 
through Equation 4.

HLB = 7 – 0,36 ln [(100-CMC)/CMC]	 (Equation 4)

Density and pH

The density of FAME was determined using a 
pycnometer (Iwaki, Japan) based on the method 
described by Rahim and Prihatiningtiyas (2017). Initially, 
an empty pycnometer was weighed, followed by the 
addition of FAME until full and sealed to prevent air 
escape. The pycnometer containing FAME was weighed, 
and the calculation was performed by comparing the 
difference in mass between the empty and pycnometer 
containing FAME.

In this research, pH of FAME was determined using 
a pH meter (WTW, Germany) according to the method 
described by Sutiko et al. (2020). FAME samples 
were placed in a glass beaker (Iwaki, Japan) and pH 
measurement was carried out using a pH meter.

Research design

The research design used was Full Factorial 
Completely Randomized Design (FFCRD) with three (3) 
factors, namely temperature (50 and 60 °C), reaction 
duration (60, 90, and 120 minutes), and the interaction 
(temperature*duration). Moreover, the interaction 
produced 6 levels of combinations, namely 50 °C for 
60 minutes, 90 minutes, and 120 minutes, as well as 
60 °C for 60 minutes, 90 minutes, and 120 minutes. 
Data were statistically analyzed using General Linear 

Model (GLM) full factorial method at a significance 
level of p<0.05. Further analysis was conducted using 
Duncan’s Multiple Range Test (DMRT) and t-test at the 
same significance level to ascertain differences among 
reaction duration and temperature treatments. When 
there was a significant interaction effect, data analysis 
was conducted using Analysis of Variance (ANOVA) and 
DMRT for post hoc at a significance level of p<0.05. 
Subsequently, samples with the highest yield were 
subjected to surfactants characteristic analysis with 
three repetitions.

RESULTS AND DISCUSSION  

Effect of Reaction Temperature on FAME Yield

Figure 1 shows the influence of reaction 
temperature, where a significant increase in the FAME 
yield was observed when the temperature increased 
from 50 °C to 60 °C. According to Sipahutar and 
Tobing (2013), the yield increases as the reaction 
temperature rises because the conversion of methyl 
ester occurs perfectly when the reaction temperature 
reaches the boiling point of methanol at 65 °C. This 
shows that higher reaction temperatures can enhance 
the effective collision frequency between reactant 
molecules (palm oil and methanol), thereby increasing 
the rate of methyl ester formation, and reducing the 
required reaction time (Widyasanti et al., 2017). Lubes 
and Zakaria (2009) stated that the reaction should be 
conducted at the optimal temperature, lower than the 
boiling point of methanol (65 °C), to avoid a reduction 
in the amount of methanol available for reaction due 
to evaporation. When the reaction is carried out at 

Description: numbers followed by different letters are significantly 
different at a significance level of p<0.05; n=18

Figure 1. Effect of reaction temperature on the 
average value of FAME yield
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70 °C, methanol evaporates, resulting in a lower 
yield. Leung et al. (2010) and Leung and Guo (2006) 
stated that when the reaction temperature exceeded 
the optimum range (50–60 °C), a lower FAME yield 
was observed due to methanol evaporation, shifting 
the reaction towards saponification rather than 
transesterification. According to Chanakaewsomboon 
et al. (2020), undesired saponification reactions affect 
catalyst consumption, and phase separation, resulting 
in the formation of emulsions, capable of reducing 
FAME yield.

Effect of Reaction Duration on FAME Yield

As shown in Figure 2, reaction duration of 60 and 
90 minutes did not cause a significant increase in FAME 
yield, as similarly reported by Sipahutar and Tobing 
(2013). However, Eevera et al. (2009) produced FAME 
from various edible oils (coconut, palm, peanut, bran, 
and sesame oils) and non-edible oils (pongamia, 
cottonseed, and neem) using 1.5% (w/w) NaOH as 
catalyst, where a significant rise in yield was obtained 
when the reaction duration increased from 60 to 90 
minutes. This difference was attributed to variations 
in the type and concentration of catalyst, as this 
research used 1% (w/w) KOH as catalyst. Generally, 
NaOH is more reactive than KOH due to the higher 
reactivity of sodium (Na) compared to potassium (K) 
(Mulana, 2011). According to Herawati et al. (2020) 
and Leung et al. (2010), the FAME yield decrease was 
attributed to the formation of soap (saponification) 
due to catalyst excess, which led to difficulties in 
separating FAME related to the formation of emulsified 
soap particles and water (Holilah et al., 2013; Leung 
et al., 2010).

FAME yield significantly increased as reaction 
time changed from 90 to 120 minutes. Previous 
research established that longer reaction duration 
could increase the number of collisions between 
reactant molecules, thereby producing more products 
(Mandei et al., 2020). Similarly, previous studies that 
used watermelon seed oil and a catalyst of 0.19 g 
NaOH (Efavi et al., 2018), as well as virgin coconut oil 
(VCO) and a catalyst of 1.25% w/w NaOH (Mandei et 
al., 2020), reported increased FAME yield at reaction 
duration from 90 to 120 minutes. This showed that 
palm oil, watermelon seed oil, and VCO required a 
reaction duration of approximately 120 minutes for 
optimal FAME production. However, an extended 
reaction duration does not guarantee an increase in 
the amount of methyl ester produced because there is 
an optimal duration to achieve reaction equilibrium in 
producing FAME products (Mandei et al., 2020).

Interaction between Temperature and Reaction 
Duration on FAME Yield

The statistical analysis showed that there was an 
interaction between temperature and reaction duration on 
FAME yield, as shown by a significance value of p=0.000. 
The differences between the interaction temperature and 
reaction duration on FAME yield are presented in Table 1.

Table 1. Interaction of temperature and reaction 
duration on FAME yield

Interaction of temperature and 
reaction duration Yield (%)

50 °C - 60 minutes 73,29±0,62a

50 °C - 90 minutes 73,93±0,36ab

50 °C - 120 minutes 74,93±0,43b

60 °C - 60 minutes 78,67±0,59c

60 °C - 90 minutes 78,75±0,05c

60 °C - 120 minutes 82,43±0,06d

Description: numbers followed by different letters are significantly 
different at a significance level of p<0.05.

The interaction between temperature of 60 °C and 
a reaction duration of 120 minutes produced the highest 
FAME yield. This was due to the reaction temperature 
reaching the boiling point of methanol (<65 °C) and 
the optimal reaction duration, which increased the 
frequency as well as the number of effective collisions 
between reactant molecules to ensure perfect methyl 
ester conversion (Sipahutar and Tobing, 2013; 
Widyasanti et al., 2017).

Description: numbers followed by different letters indicate 
significantly different at a significance level of p<0.05; n=18

Figure 2. Effect of reaction duration on the average 
value of FAME yield
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Characteristics of Fatty Acid Methyl Ester 
Surfactants with the Highest Yield

FAME surfactants with the highest yield were 
observed to appear golden yellow, as shown in Figure 
3. Subsequently, the characteristics of these surfactants 
were determined, including surface tension value, CMC, 
HLB, density, and pH value.

properties, which include conductivity, surface tension, 
osmotic pressure, and turbidity, pass through sudden 
changes after micelle formation (Karimi et al., 2015). 
CMC shows the minimum concentration of surfactants 
required to achieve the lowest surface tension. 
Furthermore, it is reached when surfactants start 
forming micelles, as shown by the absence of a further 
decrease in surface tension. In practical applications, 
surfactants with low CMC values are considered more 
advantageous than those with higher values (Sarubbo 
et al., 2022; Shi et al., 2019).

Figure 4 shows the reduction in surface tension 
of water after the addition of various concentrations of 
FAME. Based on the results, CMC was reached when 
the surface tension of water remained constant at 
19.52±3.05 dyne/cm with a concentration of 1.50% 
(v/v). When the surfactant concentration is above the 
CMC, it shows constant surface tension activity because 
micelles begin to form, giving rise to a surfactant layer on 
the water surface (Belhaj et al., 2019). FAME surfactants 
obtained in this research showed the potential to reduce 
the surface tension of water by 73.20%, from 72.80 
dyne/cm to 19.52 dyne/cm. This is similar to the ability 
of commercial glycerol esters (palmitate, stearate, 
oleate), which can reduce surface tension by 59–79% 
(Wardana et al., 2019). The ability to reduce surface 
tension is also found in several biosurfactants, such 
as surfactin (62.91%), rhamnolipid (58.79%), and 
sophorolipid (54.67%) (Sarubbo et al., 2022). Other 
surfactants capable of reducing surface tension include 
tert-butyl glucoside (37.26%), SDS (sodium dodecyl 
sulfate) (46.43%), and CPB (cetylpyridinium bromide) 
(47.94%) (Elarbi et al., 2020; Pawignya et al., 2018).
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Figure 3. Appearance of FAME produced from palm oil 
at a temperature of 60 °C and a reaction duration of 

120 minutes

FAME Surface Tension

Based on the surface tension test, FAME with the 
highest yield showed a surface tension of 30.49±0.98 
dyne/cm. Similarly, Freitas et al. (2011) and Phankosol 
et al. (2014) reported surface tension values of palm 
oil methyl ester at 31.89 dyne/cm and 30.13 dyne/
cm, respectively. Generally, optimal surface-active 
biosurfactants typically have interfacial tension of less 
than 35 dyne/cm, such as sophorolipid (33 dyne/cm), 
rhamnolipid (30 dyne/cm), and surfactin (27 dyne/
cm) (Akbari et al., 2018; Sarubbo et al., 2022). The 
surface tension value of FAME produced in this research 
was comparable to some commercial materials, such 
as methyl ester sulfonate (MES) at 30.13 dyne/cm 
and sodium lauryl sulfate (SLS) at 30.20 dyne/cm 
(Sampepana et al., 2015). This showed the potential 
of FAME surfactants developed in this research for 
commercial development.

CMC (Critical Micelle Concentration)

CMC is an essential physicochemical parameter 
effective in characterizing pure surfactants regarding 
surface activity and ability to form aggregates (Perinelli 
et al., 2020; Shi et al., 2019). Specifically, CMC value is 
determined by observing the changes in physical and 
chemical properties of a solution that occur after the 
addition of surfactant at various concentrations. These 

Description: 10 samples of FAME solution at various concentrations 
with 3 repetitions at each concentration

Figure 4. Effect of various concentrations of FAME 
surfactant on water surface tension. Numbers followed 

by the same letter are not significantly different 
(p<0.05)
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According to Peltonen et al. (2001), CMC value 
increases along with the hydrophilic properties 
of surfactants and decreases as the hydrophobic 
properties of surfactants rise. The change in CMC 
value depends on the hydrophobicity of surfactants, 
which is the length of hydrophobic tail (Perinelli 
et al., 2020). This is consistent with HLB values of 
surfactants in Table 2, where those with a higher 
HLB value means it has a more significant number 
of hydrophilic groups compared to their lipophilic 
groups, so it has a higher CMC, and vice versa. 
According to Sarubbo et al. (2022), surfactants 
with lower CMC values are more advantageous for 
applications. This shows that FAME produced has 
the potential for development, as CMC value varies 
between the commercial surfactants.

HLB (Hydrophilic-Lipophilic Balance)

HLB is the ratio between the hydrophilicity and 
hydrophobicity contained surfactants, expressed in 
the range of value 1–20, serving as an indicator of 
surfactants properties. Generally, surfactants with 
HLB values of 1.5–3 are used as antifoaming agents, 
3–6 for water-in-oil (w/o) emulsifiers, which include 
glycerol, propylene glycol fatty acid, polyglycerol, and 
sorbitan fatty acid. Other functions include surfactants 
with 7–9 as wetting and spreading agents, 13–15 as 
detergents, 12–16 as oil-in-water (o/w) emulsifiers 
(proteins, phospholipids, potassium, sodium salts, and 
alginates), with 15–18 as solvents or solubilizing agents 
(Nakama, 2017; Ng and Rogers, 2018; Reningtyas and 
Mahreni, 2015).

The calculated HLB value for FAME was 5.47±0.04, 
showing the presence of more lipophilic groups than 
hydrophilic, and potentially used as a water-in-oil (w/o) 
emulsifier. The use of FAME can replace commercial 
surfactants with similar HLB value, such as sorbitan 
esters (Span 40 (6.7), Span 60 (4.7), Span 80 (4.3)) 
and commercial glycerol esters (palmitate, stearate, 
oleate: 5.09) (Melo-Espinosa et al., 2015; Wardana et 
al., 2019).

Density

Density is an essential parameter for surfactants 
due to the relevance in the application. Generally, 
surfactants require a density value with a small 
difference compared to solvent or product, to 
facilitate mixing and maintain the stability of emulsion 
(Uzwatania et al., 2017). In this research, FAME has a 
density of 0.876±0.002 g/cm3, consistent with a study 
of Ghazanfari et al. (2017), which reported that the 
density of FAME from palm oil ranges from 0.843 to 
0.890 g/cm3. The investigation conducted by Hutami 
and Ayu (2015) also produced FAME with a density of 
0.872 g/cm3. However, these FAME values have a lower 
density compared to commercial surfactants, such as 
sorbitan and glycerol esters, ranging from 0.941 to 
1.041 g/cm3).

pH

A neutral pH is essential in FAME to avoid taste 
alteration in food products (Nawangsasi, 2017). In this 
research, FAME produced has a pH of 6.86±0.07, which 
is categorized in pH range (5-7.7) of some commercial 
surfactants commonly used in food products, such as 
Tween 80 and 60.

Based on the similar characteristics with sorbitan 
and glycerol esters, FAME can also be applied as 
emulsifier in several products. Specifically, FAME is used 
in chocolate products, ice cream, flavored-filled candies, 
and margarine (Awuchi et al., 2020; Barišić et al., 2019; 
Chen, 2015; Partridge et al., 2019). Since emulsifiers 
require a neutral pH, so there is no influence on the 
taste of food products when added as a food additive. 
However, the application of FAME with a low pH as an 
emulsifier tends to affect the taste of the food product, 
resulting in slight acidity (Kinyanjui et al., 2003; 
Mcglynn, 2016).

CONCLUSION 

In conclusion, this research showed the significant 
influence of reaction temperature, reaction duration, 

Table 2. CMC and HLB values for several surfactants

Surfactants CMC HLB Source

Metil ester sulfonat (MES) 2,22% 13,36 Sampepana et al. (2015)

Commercial glycerol palmitate 0,50% 5,09 Wardana et al. (2019)

Commercial glycerol stearate 0,50% 5,09 Wardana et al. (2019)

Commercial glycerol oleate 0,50% 5,09 Wardana et al. (2019)

FAME 1,50% 5,47 Research results
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and their interaction on the yield of FAME surfactants 
produced from palm oil using KOH as catalyst. The 
reaction conditions at 60 °C for 120 minutes resulted 
in the highest yield, reaching 82.43±0.06%. FAME 
surfactant produced under these conditions had an HLB 
value of 5.47±0.04, surface tension of 30.49±0.98 dyne/
cm, and could reduce the surface tension of water from 
72.80 dyne/cm to 19.52 dyne/cm (73.20%) at CMC of 
1.50% (v/v), with a density of 0.876±0.002 g/cm3 and 
pH value 6.86±0.07. These characteristics showed the 
potential for development as biodegradable surfactants 
using renewable materials, possessing characteristics 
comparable to some commercial surfactants. Moreover, 
further research was recommended including validation 
tests to confirm the presence of methyl ester compounds 
in FAME. Other tests and analyses should also be 
carried out to explore the potential application of FAME 
as emulsifier in a w/o (water in oil) emulsion system, 
including the characteristics and stability. 
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