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ABSTRACT 

An environmentally friendly packaging material that can be used in place of synthetic, non-green plastic packaging 
is biodegradable film. Therefore, this study aims to determine the effect of sorbitol plasticizer concentrations 
on the characteristics of biodegradable film produced from chicken claw waste. The treatments applied during 
the production process consisted of three sorbitol concentrations, including 0.5, 1, and 1.5%, repeated thrice. 
Characterization of biodegradable film comprised thickness, water content, water solubility, film swelling, 
mechanical properties, pH, water vapor permeability, oxygen permeability, and degradation tests. Analysis of 
variance  results showed that the sorbitol concentrations significantly influenced thickness value, but did not 
affect other characteristics. The best treatment was 0.5% sorbitol which generated thickness of 0.15 mm, WC of 
13.97%, WS of 44.72%, swelling of 96.97%, tensile strength of 12.29 MPa, elongation of 22.23%, elasticity 58.53 
Mpa, pH 7.5, WVP 9.26 g.m-1 pa-1 hour -1, OP 1.52 g.m-1 pa-1, and degradability for 14 days. 
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INTRODUCTION 

Synthetic plastic is difficult to decompose, leading 
to environmental pollution and harmful effects on health 
when consumed. Plastic produced from petrochemicals 
cannot be broken down by microorganisms due to the low 
biodegradability. To carry out effective decomposition, 
microorganisms require special enzymes from an external 
source (Darni & Utami, 2010). The increasing use of 
plastic material for packaging is attributed to advantages, 
including lightness, durability, ease of shaping, anti-
corrosion, good chemical resistance, electrical conductor 
insulation, and suitability for coloring addition (Mujiarto, 
2005). Since this plastic type is unsafe, innovative 
technology is needed to develop environmentally friendly 
and consumable packing materials.

Biodegradable film is a material with thin, soft, and 
edible layer characteristics, appropriate for protecting or 
serving as packaging for eco-friendly products. Because 
of the ability to prevent the loss of water and air from 
products, as well as the mass transfer of solids into a 
material (Bustillos et al., 1994), biodegradable film is 
considered a new step and breakthrough to restore the 
healthy status of the earth. Plasticizers are added to 
reduce stiffness, increase elastic properties, and enhance 
the durability of biodegradable film produced from gelatin 
using chicken claw in the food packaging process. 

Chicken claw, skin, and bones comprising a 
high content of unexploited collagen are less popular 
animal parts, often processed cheaply alongside other 
by-products such as feathers (Santana et al., 2020). 
The chemical content of chicken claw is 5.6% fat, 
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65.9% water, 22.98% protein, 3.49% ash, and other 
component estimated at 2.03% (Purnomo, 1992). 
Chicken claw has the potential to be further developed 
due to containing high protein, specifically collagen, that 
by hydrolysis can be transformed into gelatin (Choe & 
Kim, 2018). The processed products from animal gelatin 
include biodegradable film (Khedri et al., 2021), It has 
good mechanical qualities and is frequently used in food 
packaging because of its permeability to gas and air 
(Etxabide et al., 2021) and a transparent nature (Ji et 
al., 2021; Wang et al., 2021). 

Certain studies previously manufactured gelatin 
from chicken claw waste (Fatima et al., 2022; Ratna 
et al., 2023), but there have been no reports regarding 
biocomposite food packaging film produced with 
a gelatin/carboxymethyl cellulose (CMC)/sorbitol 
formulation. CMC is incorporated into biodegradable 
film to increase stability and compactness, while sorbitol 
addition enhances elasticity, preventing brittleness 
or easy cracking. Thus, the purpose of this work is to 
ascertain how the concentration of sorbitol plasticizer 
affects the properties of gelatin-based biodegradable 
film made from chicken claw waste.  The characterization 
test examined swelling, thickness, water solubility (WS), 
pH, water content (WC), oxygen permeability (OP), 
water vapor permeability (WVP), mechanical properties,  
and degradability, which were expected to be improved 
in gelatin-based biodegradable film packaging. 

METHODS 

Materials

The study employed broiler chicken claw waste 
that was purchased from vendors in Aceh Besar and 

Banda Aceh, Indonesia, while the engaged equipment 
included a microwave, digital scale, hot plate, oven, and 
silicone mold. Additionally, German Emsure® NaOH 
pellets were purchased for analysis, alongside German 
Merck KGaA acetic acid (CH3COOH), NaCl (technical), 
butterfly brand CMC (technical), sorbitol (technical), 
and distilled water.

Biodegradable Film Production Process

During the preparation of modified agar (Ratna 
et al., 2022; Ratna et al., 2023), fresh chicken claw 
was soaked in 0.2 molar NaOH for 48 hours and the 
solution was changed every 24 hours. This mixture was 
washed until pH approached neutral, then soaking was 
continued in 0.05 M acetic acid solution for 24 hours 
before washing and extraction with distilled water. The 
ratio of claw to distilled water was 1:5 (w/v) and the 
extraction process was performed over a period of 4 
hours using a microwave with 180 W power, followed 
by drying at 50 °C until the maximum WC became 16% 
to generaté gelatin.

Biodegradable film production implemented a 
non-factorial Completely Randomized Design (CRD) 
featuring 0.5% (S1), 1% (S2), and 1.5% (S3) v/v sorbitol 
concentrations, which were repeated thrice, and other 
treatments included 2% (w/v) gelatin, 1% (w/v) CMC, as 
well as 200 mL distilled water. The gelatin and 1% CMC 
were dissolved in 60 mL and 80 mL of distilled water 
using a hot plate while stirring, respectively. The solution 
from both material was mixed, distilled water was added 
until reaching 200 mL, and reheating was conducted for 
thirty minutes at 60 °C on a heated plate while stirring 
continuously. This was cooled for 5 minutes and sorbitol 
was introduced at concentrations corresponding with the 
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treatments before being transferred into a silicone mold 
measuring 20.5 cm x 18.5 cm. Drying was performed using 
an oven at 60 °C for 20 hours, after which biodegradable 
film produced was removed from the mold. 

Characterization of Biodegradable Film

Thickness

After the film was taken out of the mold, its 
thickness was measured at nine different random 
locations using a screw micrometer.  Subsequently, 
an average of the measurements was calculated as 
thickness of biodegradable film produced in this study 
(Ratna et al., 2022, Ratna et al., 2024; Ratna et al., 
2023; Ratna et al., 2023).

Water Solubility (WS) and Water Content (WC) 

Empty 50 mL bottles were coded and the initial 
weight W1 was measured, then the 30 mm x 30 mm film 
was added and weighed as W2. Heating was performed 
in the oven at 105 °C for 24 hours and dry weight was 
calculated as W3, then 15 mL of distilled water was 
introduced into the bottles containing film and stirred 
before stagnating for 24 hours and discarding water 
component. Drying was conducted again at 105 °C for 
24 hours, followed by weighing to obtain W4, WC, and 
WS using Equations 3 and 4 (Ji et al., 2021).
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Where d is film thickness (mm), m represents the 
mass loss (g), A denotes the area of   the bottle mouth 
(m2), t is the measurement time interval (h), and p 
signifies the partial vapor pressure (4247 Pa) difference 
between the two sides of film at room temperature and 
relative humidity of 100%.

Oxygen Permeability (OP)

OP measurement was conducted based on the 
modification of a previous procedure (Yadav et al., 2020; 
Ratna et al., 2022), where biodegradable film was cut 
into 30 mm x 30 mm. The bottles used were 9 mL in size 
and gelatin film was placed over the mouths, and the 
starting weight was recorded. These were transferred 
into a desiccator, then weighed every 24 hours for 3 
days, while Oxygen Permeability Transmission Rate 
(OPTR) and oxygen permeability were calculated using 
Equations 7 and 8 (Yadav et al., 2020).
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Degradation Test 
 

Degradation test was performed by cutting biodegradable film into individual sizes measuring 
30 mm × 30 mm. Biodegradable film sample was planted without covering (aerobically) to promote 
direct contact with bacteria and fungi present in the soil, a process also known as soil burial test (Haryati 
et al., 2017). Observations were conducted every 3 days to monitor the visual changes that occurred 
until the sample experienced degradation. 

 
Statistic Analysis 
 

The test result data obtained were the mean ± standard deviation (SD), examined using One-
way Analysis of variance (ANOVA). This was followed by the Duncan test at a significance level of p < 
0.05, and the entire collected data were analyzed using SPSS ver.24. 
 
RESULTS AND DISCUSSION  
 
Thickness  
 

Thickness of biodegradable film can influence the tensile mechanical properties, elongation rate, 
WVP, and OP. The results of thickness testing conducted on biodegradable film samples showed 
different values, as presented in Figure 1. 
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Permeability Transmission Rate (OPTR) and oxygen permeability were calculated using Equations 7 and 
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P = Partial vapor pressure differential between dry atmosphere and pure water (0.02308 atm/1.013x105 

Pa at 25 °C), and L represents the average biodegradable film thickness. Meanwhile, slop is the slope 
value of the line on a linear regression graph with the X axis as time (per hour) and the Y axis being 
the weight (g) of biodegradable film sample. 
 
Degradation Test 
 

Degradation test was performed by cutting biodegradable film into individual sizes measuring 
30 mm × 30 mm. Biodegradable film sample was planted without covering (aerobically) to promote 
direct contact with bacteria and fungi present in the soil, a process also known as soil burial test (Haryati 
et al., 2017). Observations were conducted every 3 days to monitor the visual changes that occurred 
until the sample experienced degradation. 

 
Statistic Analysis 
 

The test result data obtained were the mean ± standard deviation (SD), examined using One-
way Analysis of variance (ANOVA). This was followed by the Duncan test at a significance level of p < 
0.05, and the entire collected data were analyzed using SPSS ver.24. 
 
RESULTS AND DISCUSSION  
 
Thickness  
 

Thickness of biodegradable film can influence the tensile mechanical properties, elongation rate, 
WVP, and OP. The results of thickness testing conducted on biodegradable film samples showed 
different values, as presented in Figure 1. 
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atmosphere and pure water (0.02308 atm/1.013x105 Pa 
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the line on a linear regression graph with the X axis as 
time (per hour) and the Y axis being the weight (g) of 
biodegradable film sample.

Degradation Test

Degradation test was performed by cutting 
biodegradable film into individual sizes measuring 30 
mm × 30 mm. Biodegradable film sample was planted 
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without covering (aerobically) to promote direct contact 
with bacteria and fungi present in the soil, a process 
also known as soil burial test (Haryati et al., 2017). 
Observations were conducted every 3 days to monitor 
the visual changes that occurred until the sample 
experienced degradation.

Statistic Analysis

The test result data obtained were the mean ± 
standard deviation (SD), examined using One-way 
Analysis of variance (ANOVA). This was followed by the 
Duncan test at a significance level of p < 0.05, and the 
entire collected data were analyzed using SPSS ver.24.

RESULTS AND DISCUSSION 

Thickness 

Thickness of biodegradable film can influence the 
tensile mechanical properties, elongation rate, WVP, 
and OP. The results of thickness testing conducted on 
biodegradable film samples showed different values, as 
presented in Figure 1.

Figure 1 shows that the application of greater 
sorbitol concentration in the current study leads to the 
production of thicker biodegradable film. This product 
was similar to the type reported by Ratna et al. (2022), 
where greater sorbitol concentration generated thicker 
sample. Therefore, a sorbitol concentration of 0.5% 
produced the smallest thickness, and 1.5% generated 
films with the largest thickness ranging from 0.15 – 0.17 
mm. Based on the results, all treatments with different 

sorbitol concentrations still produced thickness adhering 
to the Japan International Standard with a maximum 
value of 0.25 mm. The sorbitol concentrations were 
significantly different *p<0.05 from thickness value of 
biodegradable film. Based on the results of the Duncan 
Advanced Test, sample S1 was found to be insignificantly 
different from S2 but it varied from S3, while S2 was 
insignificantly different from S3. 

Water Content (WC)

WC is the amount of water present in biodegradable 
film, therefore, it greatly influences the shelf life of the 
packaging material. The particular relationship existing 
between WC and sorbitol concentration added during 
the experiment is shown in Figure 2.

The purpose of WC testing conducted was 
to determine the total WC present in the resulting 
biodegradable film packaging. According to a previous 
study (Setiani et al., 2013), a packaging containing 
high WC would be easily attacked by microorganisms, 
specifically the type comprising high protein, but 
those with low WC could be more resistant to 
attacks. Biodegradable film data in Figure 5 showed 
that treatment with sorbitol concentrations of 0.5%, 
1%, and 1.5% generated the lowest WC value at 
13.97%, followed by 14.65%, and the highest WC at 
14.72%, respectively. The sorbitol concentrations were 
significantly different at p-value >0.05 compared to WC 
value of biodegradable film.

Water Solubility (WS)

WS shows the ability of biodegradable film to absorb 
water and dissolve, leading to easy decomposition when 

Figure 1. The average value of biodegradable film 
thickness for each sorbitol concentration treatment

S. S. B. Padang et al. / agriTECH 44 (3) 2024, xxx-xxx 
 

6 
 

 
Figure 2. The average WC value of biodegradable film at each sorbitol concentration treatment 
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thrown directly into the environment. Furthermore, the 
entire WS values of biodegradable film produced in this 
study are respectively presented in Figure 3.

Solubility of biodegradable film in water can 
determine the appropriate application for food 
packaging (Dogaru et al., 2021), while the hydrophilic 
and hygroscopic nature affects film solubility. Buffer 
plasticizers interact with film polymer which tends 
to increase the space between chains, supporting 
the transfer of water into the internal compartment, 
thereby increasing solubility (Ahmadi et al., 2021). 
Biodegradable film with low solubility is often applied to 
food as packaging, but the higher WS level will lead to a 
more rapid degradation process. According to Figure 4, 
0.5%, 1.5%, and 1% sorbitol concentration treatments 
generated the highest WS results at 44.72%, followed by 
43.86%, and the lowest was 42.41%, respectively. The 
sorbitol concentrations showed no significant difference 
at p>0.05 compared to WS value of biodegradable film.

Swelling

The development test was conducted to determine 
the percentage of swelling that occurred in the produced 
film due to water presence. Swelling tends to be caused 
by materials possessing hydrophilic properties, namely 
those capable of binding water (Yadav et al., 2020). 
The effect of sorbitol concentration on the development 
of biodegradable film for each sample is presented in 
Figure 4. The lowest swelling with a value of 96.97%, 
followed by 97.26%, and the highest at 97.37% was 
initiated by 0.5%, 1.5%, and 1% sorbitol concentration 
treatments, respectively. Swelling increases with higher 
water absorption capacity, and vice versa, while the 

occurrence of water absorption at a high speed leads to 
swelling (Yadav et al., 2020). The sorbitol concentration 
did not show a significant difference at p>0.05 in the 
development of biodegradable film.

Mechanical Properties

The ability of a film to sustain maximal stress 
before rupturing is known as its tensile strength, and 
the values obtained among biodegradable films in this 
study vary as shown in Figure 5. Biodegradable film 
is expected to have high tensile strength values in 
order to be used as quality packaging for a product, 
and sorbitol addition can increase tensile strength. 
Plasticizers affect the internal hydrogen bonds of film 
molecules to weaken the attraction of intermolecular 
hydrogen bonds in the polymer chain, thereby 
reducing the breaking strength (Ratna et al., 2021). 
The highest tensile strength value of 14.29 Mpa and 
lowest measuring 12.29 Mpa were obtained at sorbitol 
concentrations of 1.5% and 0.5%, respectively. 
Japanese Industrial Standards (JIS) recommended a 
minimum tensile strength of 0.39 Mpa and Indonesian 
National Standard (SNI) suggested a minimum of 1-10 
Mpa. Therefore, the three treatments used in this 
study produced tensile strength values meeting JIS 
and SNI recommendations. According to a previous 
investigation (Setiawan & Aulia, 2017), the high tensile 
strength value obtained showed that biodegradable 
film was suitable for use as environmentally friendly 
packaging. Sorbitol concentrations presented a 
significant difference at *p≤0.05 for tensile strength 
value of biodegradable film. The Duncan Advanced 
Test results showed that treatment S1 was significantly 
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Solubility of biodegradable film in water can determine the appropriate application for food 
packaging (Dogaru et al., 2021), while the hydrophilic and hygroscopic nature affects film solubility. 
Buffer plasticizers interact with film polymer which tends to increase the space between chains, 
supporting the transfer of water into the internal compartment, thereby increasing solubility (Ahmadi et 
al., 2021). Biodegradable film with low solubility is often applied to food as packaging, but the higher 
WS level will lead to a more rapid degradation process. According to Figure 4, 0.5%, 1.5%, and 1% 
sorbitol concentration treatments generated the highest WS results at 44.72%, followed by 43.86%, 
and the lowest was 42.41%, respectively. The sorbitol concentrations showed no significant difference 
at p>0.05 compared to WS value of biodegradable film. 
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leads to swelling (Yadav et al., 2020). The sorbitol concentration did not show a significant difference 
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Figure 4. Average swelling value of biodegradable film for each sorbitol concentration treatment  
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different from S3, while S2 varied from S3, and S1 was 
not significantly different from S2.

Elongation test aims to determine film ability 
to elongate, which is calculated until the material 
breaks, and the results can be seen in Figure 6. 
According to JIS, elongation value below 10% for 
biodegradable film is not good, but those above 50% 
are very good. Based on SNI, the characteristics of 
good biodegradable film range from a minimum of 
20 – 21%. Elongation percentage in this study was 
different for each treatment, namely ranging from 

20.13% to 25.41%. The applied sorbitol concentration 
of 1.5% generated the lowest value and 1% produced 
the highest elongation value. Treatments that met 
these two standards were 0.5% and 1%, while sorbitol 
concentration showed a significant difference at 
*p≤0.05 for film elongation value. The results of the 
Duncan Advanced Test showed significant differences 
between treatments S1 and S3 as well as S2 and S3, 
but S1 and S2 had no significant differences. Elongation 
value has an inverse relationship with tensile strength, 
thereby implying that a greater elongation value leads 
to smaller tensile strength.

Elasticity is a testing procedure that determines 
how resistant film material is to experiencing strain 
against the effort of the material to achieve the original 
shape after distortion by vertical external stress. The 
results of the relationship between the effect of sorbitol 
addition and elasticity is presented in Figure 7. The 
addition of sorbitol tends to increase film elasticity, 
thereby producing film that is not brittle or easily 
broken. According to a previous study (Bustillos et al., 
1994), elongation percentage value exceeding 50% 
represented a good film category. Film is categorized 
as bad when the percentage value of film length is 
less than 10%, and Figure 6 shows various elongation 
results. The data obtained was that the 0.5%, 1%, and 
1.5% sorbitol concentrations produced film reaching 
elasticity levels of 58.53%, 46.65%, and 76.10%, 
respectively. S1, S2, and S3 generated good elasticity 
values, while sorbitol concentrations presented a 
significant difference of *p≤0.05 for elasticity values of 
biodegradable film. The Duncan Advanced Test results 
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packaging. Sorbitol concentrations presented a significant difference at *p≤0.05 for tensile strength 
value of biodegradable film. The Duncan Advanced Test results showed that treatment S1 was 
significantly different from S3, while S2 varied from S3, and S1 was not significantly different from S2. 

 
Figure 5. Average tensile strength value of biodegradable film for each sorbitol concentration treatment  
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packaging. Sorbitol concentrations presented a significant difference at *p≤0.05 for tensile strength 
value of biodegradable film. The Duncan Advanced Test results showed that treatment S1 was 
significantly different from S3, while S2 varied from S3, and S1 was not significantly different from S2. 
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Elasticity is a testing procedure that determines how resistant film material is to experiencing 
strain against the effort of the material to achieve the original shape after distortion by vertical external 
stress. The results of the relationship between the effect of sorbitol addition and elasticity is presented 
in Figure 7. The addition of sorbitol tends to increase film elasticity, thereby producing film that is not 
brittle or easily broken. According to a previous study (Bustillos et al., 1994), elongation percentage 
value exceeding 50% represented a good film category. Film is categorized as bad when the percentage 
value of film length is less than 10%, and Figure 6 shows various elongation results. The data obtained 
was that the 0.5%, 1%, and 1.5% sorbitol concentrations produced film reaching elasticity levels of 
58.53%, 46.65%, and 76.10%, respectively. S1, S2, and S3 generated good elasticity values, while 
sorbitol concentrations presented a significant difference of *p≤0.05 for elasticity values of 
biodegradable film. The Duncan Advanced Test results showed real differences between S1, S2, and 
S3, but S1 and S2 were not significantly different. 

 

 
Figure 7. The average value of biodegradable film elasticity for each sorbitol concentration treatment  
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showed real differences between S1, S2, and S3, but S1 
and S2 were not significantly different.

pH 

pH testing was performed to measure the acidity 
level of biodegradable filmproduced using gelatin 
obtained from chicken claw. The relationship between 
variations in sorbitol and pH of biodegradable film 
is presented in Figure 9, with the three treatments 
initiating pH ranges of 7.5 to 7.8. These values were 
similar to pH reported by Ratna et al. (2022) who 
conducted investigation on gelatin-based edible film 
with a glycerol concentration of 1%, which produced a 
pH of 6. All sorbitol concentration treatments produced 
biodegradable film with neutral pH, thereby promoting 
safety for use as food and edible packaging. However, 
the resulting pH changes observed were caused by 
the length of the gelatin dissolution process which 
also varied. ANOVA analysis showed that there was no 
significant effect of the sorbitol concentration treatment 
on pH value of biodegradable film with p-value >0.05.

Water Vapor Permeability (WVP)

WVP testing or water vapor transmission rate is a 
procedure to determine the transfer rate of water vapor 
that penetrates film to the environment at a certain 
temperature and humidity (Ratna et al., 2019; Ratna 
et al., 2021). The relationship between the influence of 
sorbitol concentration and WVP is presented in Figure 
9. Based on a previous study (Anandito et al., 2012), 
when the rate of water vapor transfer from material 
packaged using biodegradable film appeared small, the 
shelf life of the material would be maintained. According 

to Figure 12, treatment with a sorbitol concentration 
of 0.5% produced good WVP values at 9.26 gm-1 pa-1 
h-1, while 1.5% generated 10.38 g.m-1 pa-1 h-1 and 1% 
initiated the highest WVP value at 11.10 g.m-1 pa-1 h-1. 
Sorbitol concentration showed no significant difference 
at p>0.05 for pH value of biodegradable film.  

Oxygen Permeability (OP)

The process known as OP is used to assess 
a bio-based film’s ability to shield food items from 
lipid oxidation, volatile scents, moisture and oxygen 
transfer, and taste degradation. The relationship 
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Figure 8. Average pH value of biodegradable film for each sorbitol concentration treatment.  
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between OP and the effect of sorbitol concentration is 
presented in Figure 10. OP influences several changes 
in the quality of food packaging including oxidative 
degradation of food components, color changes in the 
packaging, and microbial growth. A low OP value can 
reduce the potential of damaging the material to be 
packaged, therefore, a high OP leads to poor packaging 
(Wongphan et al., 2022). The study data showed OP 
values of 1.20 g.m-1 .pa-1. d-1, 2.52 g.m-1 .pa -1, and 1.52 
g.m-1 .pa-1.d-1 obtained in the 1%, 0.5%, and 1.5% 
sorbitol concentration treatments, respectively. Sorbitol 
concentration showed that there was a significant 
difference with *p≤0.05 for OP values of biodegradable 
film. The Duncan Advanced Test results showed real 
differences between S1 and S3 as well as S2 and S3, but 
S1 and S2 were not significantly different. 

Degradation

The level of biodegradable film resistance can 
be determined through biodegradability testing to 
identify the effect of decomposing microorganisms, soil 
moisture, temperature, and physicochemical factors 
found in the soil (Zulferiyenni et al., 2014). This test is 
also known as the soil burial technique, often conducted 
by controlling the microorganisms to facilitate the 
decomposition process (Subowo & Pujiastuti, 2003), 
while the structures of biodegradable film are shown in 
Figure 11.

During degradation test, each sample was planted 
using soil gathered in a different container, which was 
observed for 14 days until film was fully decomposed. 
The decomposition process was also influenced by 
microorganisms along with moist soil conditions, and 
degradation test was carried out by visual observation. 
In a maximum time of 60 days according to SNI, film 
experiences changes in the material until decomposition.

 Sample changes started occurring with variations 
in sorbitol concentrations of 1% and 1.5% during 
observations until day 3, as several holes were found 
in certain parts of film. On day 6, the surface of all 
variations of biodegradable film decreased as the days 
increased, which could be observed from the damage 
experienced with sorbitol concentration of 0.5%. The 
occurrence of damage showed the influence of soil 
microorganisms on the degradation process, and on 
day 12, the sample with a sorbitol concentration of 
1.5% was decomposed. On day 14, all biodegradable 
films had a texture similar to the soil, showing that 
the samples were completely decomposed. Based on 
visual observations, there was occurrence of significant 
degradation, which was characterized by visible damages 
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Figure 11. Gelatin-based biodegradable film from 
chicken claw waste

Figure 12. Changes in biodegradable film during degradation process
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In conclusion, the results showed that increasing sorbitol concentrations enhanced 
biodegradable film thickness, ranging from 0.15 – 0.17 mm, along with WC of 13.97 – 14.72%. WS 
described as film ability to dissolve in water showed values between 42.41 – 44.72%, while swelling 
ranged from 96.97 – 97.37%. In general, mechanical properties of biodegradable film were found to 
improve with increasing sorbitol concentrations. Smaller water vapor and OP values led to better barrier 
properties against water vapor and oxygen. In this study, higher sorbitol concentrations generated 
greater water vapor and OP values, while biodegradable film produced from chicken claw gelatin could 
decompose naturally. 
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detected. Degradation test results were consistent 
with a previous study (Apriyani, 2015) where all film 
samples tested for degradation were decomposed and 
insignificant differences were found. This observation is 
due to the ability of microorganisms in the soil to break 
down film, but the microorganisms cannot decompose 
synthetic plastics (Latief, 2001).

CONCLUSION

In conclusion, the results showed that increasing 
sorbitol concentrations enhanced biodegradable film 
thickness, ranging from 0.15 – 0.17 mm, along with 
WC of 13.97 – 14.72%. WS described as film ability 
to dissolve in water showed values between 42.41 – 
44.72%, while swelling ranged from 96.97 – 97.37%. 
In general, mechanical properties of biodegradable 
film were found to improve with increasing sorbitol 
concentrations. Smaller water vapor and OP values led 
to better barrier properties against water vapor and 
oxygen. In this study, higher sorbitol concentrations 
generated greater water vapor and OP values, while 
biodegradable film produced from chicken claw gelatin 
could decompose naturally.
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