PEMBUATAN BRONDONG DARI BERBAGAI BERAS¹

B.A. Susila Santosa², Narta² dan D.S. Damardjati³

ABSTRACT

A technology of puffed-salted rice processing has been studied. Five rice varieties (IR 64, IR 42, IR 48, Cisadane and Gemar) were used. Salt solution was sprayed onto the rice prior to puffing, at level of 10 % of rice weight. Puffed saltedrices were compared to puffed unsalted-rice.

The results showed that either rice varieties or salting affected the puffed rice characteristics. Puffed rice of Gemar variety had the highest whiteness and volume expansion, and lowest hardness. Protein quality decreased in the puffed rice, indicated by decreasing in amino acids composition. Aromatics and S-amino acid were more susceptible to degradation during puffing than the others.

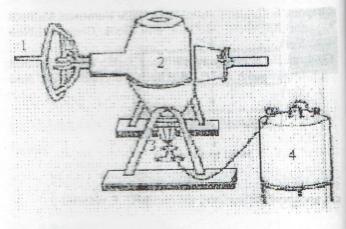
Salt spraying before puffing resulted in puffed rice with lower whiteness and volume expansion, and higher water solubility and gel consistency. Salting also increased amino acids susceptibility to degradation during puffing. Salting, however, decreased in the ability to absorb water and increased hardness, therefore the treatment would keep puffed rice crispy for longer time rather than puffed, unsalted-rice. Organoleptics evaluation also showed that puffed rice of Gemar variety had the high score of color, appearance, taste and crispiness, though poor in flavor. Rice salting decreased in the panelist acceptability of color and appearance, but increased in the crispiness, taste and flavor acceptability.

Kata-kata kunci : brondong, beras, derajad putih,

pengembangan, sifat inderawi, mutu protein

PENDAHULUAN

Brondong beras merupakan makanan ringan yang sangat populer karena sifatnya yang renyah dan ringan. Di Amerika brondong beras dicampur dengan susu untuk sarapan pagi (Villareal dan Juliano, 1987). Pada tahun 1960, 10 % produksi beras di India diolah menjadi brondong (Chinnaswamy dan Bhattacharya, 1983). Pengolahan lanjut dari brondong yang dikenal di Indonesia berupa produk tradisional yang disebut kue jipang.


Selain sebagai makanan ringan *brondong* dapat digunakan sebagai bahan pencampur pada produk lain seperti es krim dan permen coklat. Tepung *brondong* dapat juga digunakan sebagai campuran pada produk-produk instan seperti makanan sapihan, tepung ikan, tepung rempah-rempah dan obat-obatan (Sagara, 1988).

Meskipun sangat terkenal di luar negeri, brondong belum berkembang baik di Indonesia. Konsumen brondong masih terbatas pada anak-anak. Kurang populernya brondong di Indonesia disebabkan terbatasnya informasi tentang sifat/mutu, baik mutu fisik, kimia maupun organoleptik, kondisi optimal proses dan varietas yang cocok. Belum banyak sentra-sentra industri rumah tangga yang mengusahakan brondong beras. Beberapa yang bisa dijumpai antara lain di daerah Tasikmalaya, Jawa Barat.

Pembuatan brondong merupakan salah satu proses pengolahan pangan dengan cara mengembangkan volume bahan melalui perlakuan suhu dan tekanan, sehingga terjadi perubahan struktur bahan (Sulaeman, 1985). Cara pengolahan brondong yang dikenal sampai saat ini di Indonesia menghasilkan brondong yang bila kurang baik pada penanganannya akan cepat turun mutunya menjadi kurang renyah atau melempem. Penelitian ini dilakukan untuk mempelajari pengaruh perbedaan varietas dan penambahan larutan garam terhadap mutu brondong beras.

BAHAN DAN METODE

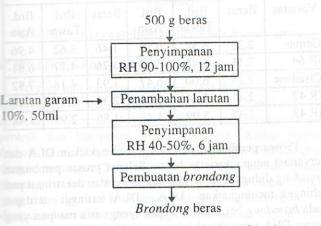
Beras yang digunakan sebagai bahan penelitian ini terdiri atas lima macam varietas, yaitu Gemar, IR 64, Cisadane, IR 42 dan IR 48, diperoleh dari PT. Sang Hyang Sri. Alat pembrondong dibuat oleh bengkel lokal, terdiri atas silinder metal dengan diameter dalam 175 mm (Gambar 1).

1. Tangki pemutar

- 2. Tabung wadah beras/brondong
- 3. Kompor Smawar
- 4. Tangki minyak tanah

Gambar 1. Alat pembuat brondong

Sebelum diproses, beras ditambah larutan garam 10 %. Brondong yang diperoleh kemudian dibandingkan dengan brondong tanpa penambahan larutan garam. Cara pembuatan brondong adalah sebagai berikut : 500 gram


¹ Makalah telah dipresentasikan pada Seminar Nasional Makanan Tradisional pada tanggal 21 Februari 1998 di IPB-Bogor

³ Kepala Balai Penelitian Bioteknologi Pertanian Tanaman Pangan, Bogor

Agritech Vol.18 No.1 halaman 24-28

² Staf Peneliti pada Balai Penelitian Tanaman Padi, Sukamandi

beras yang telah diatur kadar airnya, dimasukkan ke dalam silinder, diputar dengan kecepatan 10 - 90 rpm, dipanaskan di atas api selama 2 - 5 menit sampai tekanan akhir mencapai 8,5 - 13,3 kg/cm². Tutup alat dibuka dengan tibatiba untuk melepaskan tekanan. *Brondong* beras dikumpulkan dalam penampung. Suhu alat berkisar antara 160 - 255°C. Proses selengkapnya terlihat pada Gambar 2. Percobaan dilaksanakan dengan Rancangan Acak Lengkap Faktorial, 3 ulangan. Pengamatan yang dilakukan meliputi mutu fisik (pengembangan volume, kekerasan, derajat putih, daya serap dan daya larut air), kadar protein dan komposisi asam amino, amilografi dan mutu organoleptik (warna, rasa, kerenyahan, penampakan dan aroma).

Gambar 2. Diagram alir pembuatan brondong beras.

HASIL DAN PEMBAHASAN

A. Sifat Fisik Brondong

1. Derajat putih

ing

ga

isa

ses

me

idi

га

di

lik

idi

an

an

ni

4.

ng

iri

ar

n

an

Pengaruh varietas padi pada derajat putih terlihat pada Tabel 1. Proses pembuatan *brondong* meningkatkan derajat putih beras antara 20,79 - 47,90 %. Derajat putih beras varietas unggul lokal (Gemar dan Cisadane) lebih tinggi dibanding varietas introduksi. Hal ini disebabkan perbedaan bentuk butir berasnya. Beras berbutir medium/bulat (Cisadane dan Gemar) akan lebih putih dibanding beras berbutir lonjong pada lama penyosohan yang sama. Derajat putih *brondong* tampak dipengaruhi derajat putih berasnya. Sementara itu penambahan garam menurunkan derajat putih *brondong*. Sifat higroskopis garam diduga telah menyebabkan kondisi kering bahan selama pemanasan sehingga terjadi karamelisasi yang berakibat menurunkan derajat putih *brondong*.

Tabel 1.	Derajat putih beras dan brondong
	dari 5 varietas padi

Varietas	Beras	Brondong tawar	Brondong asin
Gemar	34,47	46,43	45,63
IR 64	30,92	45,73	41,82
Cisadane	36,46	644,04	37,47
IR 42	32,12	43,53	45,46
IR 48	32,10	43,50	34,64

2. Pengembangan volume dan kekerasan

Pengembangan volume merupakan perbandingan antara volume brondong dengan volume berasnya. Baik varietas maupun penambahan garam berpengaruh nyata pada pengembangan volume dan kekerasan brondong, seperti terlihat pada Tabel 2. Variasi pengembangan volume antar varietas disebabkan perbedaan kadar patinya (Chinnaswamy dan Bhattacharya, 1983). Araullo et al. (1976) mendapatkan bahwa brondong yang dibuat dari beras pratanak yang berkadar amilosa rendah menghasilkan pengembangan volume yang tinggi karena keseimbangan kadar air yang tinggi selama perendaman sebelum proses pratanak. Sementara itu Tester dan Morrison (1996) bahwa pengembangan volume pati menyatakan berhubungan dengan kadar amilopektin, sedangkan amilosa menghambat pengembangan volume terlebih bila terdapat lipida dalam bahan.

Kekerasan diukur dengan alat *Instron Testing Machine* dan dinyatakan dalam kg beban yang diperlukan untuk memecahkan butiran *brondong*. Hasil penelitian (Tabel 2) menunjukkan bahwa varietas padi berpengaruh pada kekerasan *brondong*. *Brondong* paling keras dihasilkan dari varietas IR 42, sedangkan paling lunak dari varietas Gemar. Lii *et al.* (1996) meyatakan bahwa granula pati dengan kadar amilosa lebih tinggi, akan menghasilkan gel yang lebih kuat dan keras.

Tabel 2.	Kadar amilosa, pengembangan volume dan
	kekerasan brondong dari 5 varietas padi.

Varietas	Kadar amilosa		nbangan ne (%)	Kekerasan (kg)		
	(%)	Brd. Tawar	Brd. Asin	Brd. Tawar	Brd. Asin	
Gemar	25,91	15,50	0,63	7,85	8,55	
IR 64	19,31	12,60	0,83	0,89	0,98	
Cisadane	20,39	11,60	13,05	0,94	1,07	
IR 42	28,81	9,85	10,50	1,09	1,16	
IR 48	23,59	8,50	8,15	0,93	1,17	

Penambahan garam pada beras meningkatkan kekerasan *brondong*. Penambahan garam mengakibatkan terbatasnya ketersediaan air dalam bahan sehingga bahan menjadi lebih keras. Kekerasan *brondong* berhubungan dengan pengembangan volume. Pengembangan volume yang tinggi menghasilkan kekerasan yang rendah, terutama tampak jelas pada *brondong* asin. Hal demikian disebabkan *brondong* yang mengembang terlalu tinggi membentuk struktur porus sehingga lebih renyah (kurang keras), sedangkan *brondong* yang pengembangannya rendah struktur bahannya masih kompak sehingga lebih keras tetapi kurang renyah.

3. Konsistensi gel

Proses pembuatan brondong meningkatkan konsistensi gel. Pati yang telah tergelatinisasi pada brondong telah

Agritech Vol. 18 No. 1 halaman 24-28

25

mengalami retrogradasi irreversibel sehingga kemampuannya memerangkap air menjadi sangat berkurang. Damardjati dan Luh (1987) menyatakan bahwa pada pati beras yang telah mengalami gelatinisasi terbentuk kompleks asam lemak-amilosa yang meningkatkan konsistensi gel. Asam lemak tersebut berada secara alami dalam granula pati beras. Peningkatan konsistensi gel brondong dipengaruhi baik oleh varietas maupun penambahan garam. Beras dengan kadar amilosa tinggi (IR 42 dan IR 48) setelah mengalami gelatinisasi dan retrogradasi irreversibel, kemampuannya membentuk gel selama pemasakan sangat menurun (Tabel 3). Meskipun demikian nilai konsistensi gelnya masih lebih rendah dibanding brondong beras berkadar amilosa lebih rendah. Sedangkan beras dengan kadar amilosa yang rendah (IR64 dan Cisadane) konsistensi gel berasnya sudah tinggi dan menjadi semakin tinggi ketika menjadi brondong. Namun demikian bila dilihat peningkatan konsistensi gelnya lebih rendah dibanding beras berkadar amilosa tinggi.

Tabel 3. Konsistensi gel tepung beras dan brondong	
dari 5 varietas padi	

Varietas	Beras	Brondong tawar	Brondong asin		
Gemar	60,8	91,5	94,0		
IR 64 43,0		95,5	94,5		
Cisadane	52,2	94,5	87,8		
IR 42	27,8	71,0	82,5		
IR 48	28,5	67,3	95,0		

Brondong asin umumnya memiliki konsistensi gel lebih tinggi dibanding brondong tawar, kecuali pada Cisadane. Peningkatan konsistensi gel pada brondong asin disebabkan adanya pemutusan ikatan hidrogen oleh garam. Dengan demikian kemampuan memerangkap air dan membentuk gel selama pemasakan menjadi berkurang, dan konsistensi gel meningkat.

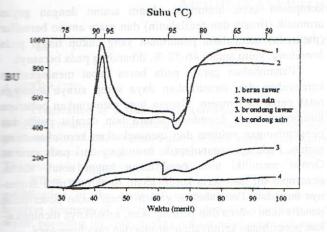
4. Daya serap dan daya larut air

Daya serap air (DSA) yang dimaksud adalah kemampuan bahan menyerap air pada suhu dingin. Baik varietas maupun penambahan garam berpengaruh pada DSA. Proses pembuatan brondong meningkatkan DSA antara 115-173 % dan 90-154 %, masing-masing untuk brondong tawar dan asin. Peningkatan DSA disebabkan oleh adanya pati yang telah tergelatinisasi selama proses pembuatan brondong. Gelatinisasi meningkatkan DSA karena terputusnya ikatan hidrogen antar molekul pati sehingga air lebih mudah masuk ke dalam molekul pati. Variasi DSA antar varietas disebabkan perbedaan kadar amilosa. DSA brondong asin umumnya lebih rendah dibanding brondong tawar (Tabel 4). Hal ini disebabkan adanya garam telah menutup gugus-gugus hidrofil pada bahan sehingga air lebih sulit menembus ke dalam molekul pati.

Sifat daya serap air penting pada brondong, terutama bila dalam penyajiannya dicampur dengan susu. Brondong

dengan DSA yang tinggi, akan lebih cepat kehilangan kerenyahannya ketika dicampur dengan susu. Dengan demikian penambahan garam pada brondong dapat mempertahankan kerenyahan brondong ketika disajikan dalam susu. Ditinjau dari DSA-nya, brondong beras beramilosa tinggi (IR 42 dan IR 48) lebih baik dibanding brondong beras beramilosa lebih rendah. Daya larut air (DLA) brondong terlihat pada Tabel 4.

Varietas	Daya	a serap ai	r (%)	Daya larut air (g / g)			
	Beras	Brd. Tawar	Brd. Asin	Beras	Brd. Tawar	Brd. Asin	
Gemar	2,33	6,54	6,10	1,46	3,62	4,96	
IR 64	2,11	5,45	5,22	1,76	4,77	6,81	
Cisadane	2,24	6,00	6,47	1,93	4,18	7,82	
IR 42	2,41	5,74	5,32	2,35	3,97	7,48	
IR 48	2.37	5,09	4,48	1,86	2,99	7,48	


Tabel 4. Daya serap dan daya larut air tepung beras dan brondong dari 5 varietas padi

Proses pembuatan brondong meningkatkan DLA dan bervariasi antara varietas beras. Selama proses pembuatan brondong diduga telah terjadi degradasi atau dekstrinasi pati sehingga meningkatkan DLA. DLA tertinggi terdapat pada brondong beras IR 64, baik yang asin maupun yang tawar. DLA yang tinggi ini menunjukkan bahwa brondong IR 64 lebih banyak mengalami degradasi selama proses pembuatan brondong. Penambahan garam meningkatkan DLA brondong, kecuali pada varietas Gemar. Hal ini diduga penambahan garam meningkatkan degradasi pati selama proses pembuatan brondong.

B. Sifat Fisiko Kimia Brondong

Sifat fisikokimia brondong yang dimaksud adalah sifat amilografi. Kurva amilografi menggambarkan perubahan konsistensi pasta dan gel pati selama pemasakan. Suhu gelatinisasi dan puncak viskositas pati brondong sulit diidentifikasi (Gambar 3). Hal ini disebabkan oleh karena sebagian besar pati brondong telah mengalami gelatinisasi dan retrogradasi irreversibel. Akibatnya pati tidak bisa lagi menyerap air secara maksimal sehingga viskositasnya relatif tetap selama pemasakan. Demikian juga pada saat pendinginan viskositas tepung brondong jauh lebih rendah dibanding tepung berasnya.

Penambahan garam umumnya menurunkan viskositas selama pemasakan baik pada beras maupun *brondong*nya. Hal ini disebabkan garam telah mengikat gugus-gugus hidrofilik dan memutuskan ikatan hidrogen sehingga penyerapan air menjadi berkurang. Dengan demikian kemampuan membentuk gel berkurang yang berakibat viskositasnya lebih rendah dibanding tanpa penambahan garam.

Gambar 3. Kurva amilografi beras dan brondongnya

C. Sifat Nutrisi Brondong

In

n

at n

s

g

Salah satu zat gizi yang menonjol dalam beras, selain karbohidrat, adalah kandungan proteinnya. Oleh karena itu sitat nutrisi *brondong* yang dipelajari adalah kandungan protein dan komposisi asam aminonya. Kadar protein brondong relatif tidak mengalami perubahan dibandingkan dengan berasnya (Tabel 5). Hal ini terjadi karena selama proses pembuatan *brondong* tidak terdapat tahapan reaksi yang menyebabkan kehilangan protein yang berarti. Proses dengan tekanan dan suhu tinggi dalam waktu singkat tidak menghilangkan protein, namun merubah mutu protein yang ditandai dengan perubahan komposisi asam aminonya.

Pada Tabel 6 terlihat bahwa semua asam amino, baik pada brondong tawar maupun asin, mengalami penurunan manding pada berasnya. Pada brondong tawar, penurunan berkisar antara 5 % (Leusin dan isoleusin) sampai 52 % (fenilalanin). Asam amino dengan gugus aromatik (fenilalanin dan tirosin) dan asam amino yang mengandung sulfur (metionin) nampaknya lebih peka terhadap panas dan schu tinggi pada proses pembuatan brondong dibanding asam amino yang lain. Penambahan garam pada pembuatan brondong, meningkatkan kepekaan asam amino terhadap ranas dan tekanan tinggi. Hal ini disebabkan oleh karena garam mengurangi ketersediaan air, sehingga pengaruh ranas dan tekanan menjadi lebih kuat. Penurunan asam amino pada brondong asin lebih tinggi dibanding pada brondong tawar. Tirosin mengalami penurunan tertinggi (54%), sedangkan terendah terjadi pada asam glutamat (11%). Resistensi rata-rata asam amino untuk brondong tawar dan asin adalah 80 dan 70 %.

Tabel 5. Kadar protein tepung beras dan brondong dari 5 varietas padi

Varietas	Beras	Brondong tawar	Brondong asin		
Gemar	9,36	8,92	8,94		
IR 64 9,55		9,20	9,43		
Cisadane	9,63	9,33	9,31		
IR 42 8,77		8,69	8,69		
IR 48	9,84	9,66	9,62		

Agritech Vol. 18 No. 1 halaman 24-28

Tabel 6. Komposisi asam amino pada beras varietas Gemar dan *brondong*nya.

Asam amino	Beras	Brondong tawar	Brondong asin
Asam aspartat	10,85	9,15	8,86
Asam glutamat	19,73	17,68	17,68
Treonin	8,36	7,05	6,36
Serin	5,64	4,68	4,35
Glisin	5,84	4,98	3,11
Valin	5,83	5,34	4,98
Metionin	1,81	0,98	0,86
Isoleusin	3,17	3,00	1,88
Leusin	6,29	5,97	4,55
Tirosin	2,59	1,35	0,93
Fenilalanin	1,28	0,61	0,97
Arginin	10,85	10,41	7,64

D. Sifat Organoleptik

Brondong yang baik adalah brondong yang warnanya cerah, kering, renyah tetapi tidak keras dan flavor tidak terlalu kuat. Sifat-sifat ini harus dapat dipertahankan selama penyimpanan. Sifat-sifat sensoris yang dikaji pada penelitian ini meliputi warna, penampakan, kerenyahan, aroma dan rasa. Hasil uji sensoris terlihat pada Tabel 7.

1. Warna

Warna *brondong* yang paling disukai adalah yang berasal dari varietas Gemar. Perubahan warna yang terjadi selama proses pembuatan *brondong* antara lain terjadinya reaksi Maillard. Reaksi ini terjadi antara gugus karbonil karbohidrat dengan gugus amina primer yang terdapat pada asam amino atau protein. Reaksi *Maillard* mengakibatkan terbentuknya warna coklat pada produk. Selain itu reaksi *Maillard* juga menghasilkan komponen aroma dan rasa (Winarno, 1984). Masalah lain yang sering timbul berkaitan dengan warna *brondong* adalah masih terdapatnya scutellum pada beras yang menyebabkan warna hitam pada *brondong* (Brockington dan Kelly, 1972).

Tabel 7. Uji organoleptik brondong beras

Varietas	Warna		Penampakan		Aroma		Rasa		Kerenyahan	
	tawar	asin	tawar	Asin	tawar	asin	tawar	asin	tawar	asin
Gemar	5,71	5,09	5,71	5,15	2,54	4,34	2,00	3,73	2.53	5.07
IR 64	5,47	4,81	5,44	4,40	3,41	4,34	2,07	3.53	2.07	4,86
Cisadane	4,54	3,87	5,09	4,59	2,88	4,68	2,35	3,09	2,07	4.81
IR 42	4,26	3,86	4,13	4,00	2.00	4,14	2,21	2.55	3.14	3.28
IR 48	5,14	4,54	4,60	4,36	2,21	4,61	2.15	3.54	2,73	4,39
Rerata	5,22	4,43	4,99	4,50	2.61	4.42	2.16	3,29	2.51	4.48

Keterangan : 1. Tidak suka 2. Agak tidak suka 3. Agak suka 4. Suka 5. Sangat suka 6. Amat sangat suka

2. Penampakan

Penampakan suatu produk sangat mempengaruhi penerimaan konsumen akan produk tersebut. Brondong yang kusam, tidak mengkilat dan berlubang-lubang akan kelihatan kurang menarik. Penampakan brondong dipengaruhi baik oleh varietas padi maupun penambahan

18

garam. Padi varietas Gemar menghasilkan *brondong* dengan penampakan paling disukai, sedangkan penerimaan paling rendah akan penampakan terjadi untuk *brondong* dari beras varietas IR 42. Menurut Brockington dan Sally (1972) beras bening diperlukan untuk menghasilkan *brondong* dengan penampakan seragam.

Sementara itu penambahan garam diduga telah mempengaruhi keseimbangan kadar air dalam bahan sehingga struktur *brondong* tidak sekompak *brondong* tawar. Namun demikian penerimaan panelis masih cukup tinggi yaitu 3 (agak suka) - 5 (amat suka).

3. Kerenyahan

Kerenyahan brondong bervariasi antar varietas padi. Varietas yang menghasilkan brondong dengan kerenyahan terbaik adalah IR 64, sedangkan terjelek IR 42. Secara keseluruhan penerimaan akan kerenyahan brondong sangat rendah (2 - 3). Penambahan garam ternyata memperbaiki kerenyahan brondong dari biasa menjadi suka. Kerenyahan berhubungan dengan pengembangan volume. Pengembangan yang terlalu tinggi menghasilkan tekstur yang terlalu lunak, kurang renyah, sedangkan pengembangan volume yang rendah menghasilkan tekstur yang keras. Penambahan garam pada beras menurunkan pengembangan volume brondong sehingga meningkatkan teksturnya dari lunak menjadi agak renyah (penerimaan panelis meningkat dari 2 menjadi 4).

4. Aroma

Aroma brondong dipengaruhi oleh varietas dan penambahan garam. Varietas Cisadane memiliki aroma terbaik diantara kelima varietas yang digunakan. Namun demikian aroma brondong tawar kurang kuat karena hanya diterima dengan skor 2 (biasa). Sedangkan penambahan garam meningkatkan penerimaan panelis akan aroma brondong menjadi agak suka (3). Dengan demikian dapat dikatakan bahwa penambahan garam dapat meningkatkan aroma brondong.

5. Rasa

Rasa *brondong* diterima panelis dengan skor 2 (biasa) kecuali untuk varietas IR 42 dengan skor 3 (agak suka). Penambahan garam meningkatkan penerimaan panelis akan rasa *brondong*. Hal ini disebabkan garam memberikan rasa gurih pada produk yang umumnya lebih disukai dibanding rasa tawar. Varietas Gemar menunjukkan peningkatan yang sangat nyata yaitu dari 2 (biasa) menjadi 5 (sangat suka).

KESIMPULAN

Varietas padi berpengaruh pada sifat-sifat brondong yang dihasilkan. Padi varietas Gemar menghasilkan brondong dengan sifat-sifat yang paling baik, yaitu derajat putih dan pengembangan volume tinggi tetapi kekerasannya rendah (cukup renyah). Proses pembuatan brondong menurunkan mutu protein, ditandai dengan penurunan komposisi asam aminonya. Asam amino dengan gugus aromatik (tirosin dan fenilalanin) dan asam amino bersulfur (metionin) mengalami penurunan yang cukup tinggi pada brondong, yaitu antara 46-52 %, dibanding pada berasnya.

Penambahan garam pada beras dapat meningkatkan kerenyahan dan menurunkan daya serap airnya sehingga tidak cepat melempem. Namun juga menurunkan beberapa komponen mutu brondong antara lain derajat putih dan pengembangan volume dan meningkatkan kerusakan asam amino. Pada uji organoleptik, brondong dari padi varietas Gemar memiliki nilai penerimaan tinggi untuk warna, penampakan, rasa serta kerenyahan, meskipun nilai aromanya terendah. Penambahan garam menurunkan penerimaan panelis akan warna dan penampakan, sebaliknya meningkatkan penerimaan kerenyahan, aroma dan rasa brondong.

DAFTAR PUSTAKA

- Araullo, E.V., D.B. de Padua dan M. Graham, 1976. Rice Postharvest Technology. International Development Research Centre, Ottawa, Canada.
- Bockington dan Kelly, 1972. Rice Breakfast Cereals and Infant Foods. Dalam D.F. Houston (ed). Rice: Chemistry and Technology. AACC, Inc. St. Paul, Minnesota, USA.
- Chinnaswamy, R. dan K.R. Bhattacharya, 1983. Studies on Expanded Rice. Physicochemical Basis of Varietal Differences. J. Food Sci. 48 : 1604.
- Damardjati, D.S. dan B.S. Luh, 1987. Physycochemical Properties of Extrusion-cooked Rice Breakfast Cereal. Balittan, Suka-mandi.
- Juliano, B.O. dan J. Sakurai, 1985. Miscelaneous Rice Products. Dalam B.O. Juliano (ed). Rice Chemistry and Technology. The AACC, Inc. Minnesota, USA.
- Lii, C.Y., M.L. Tsai dan K.H. Tseng, 1996. Effect of Amylose Content on Rheological Property of Rice Starch. Cereal Chem. 73:415.
- Sagara, Y., 1988. The Rice Surplus and New Technology for Rice Processing in Japan. Department of Agricultural Engineering, Faculty of Agriculture, Univ. of Tokyo, Japan.
- Sulaeman, A., 1985. Mempelajari Pengaruh Varietas, Kadar Air dan Penyosohan terhadap Mutu Puffing Sorgum serta Sifat-sifat Tepungnya. Skripsi. Jurusan Teknologi Pangan dan Gizi, FATETA, IPB, Bogor.
- Tester, R.F. dan W.R. Morrison, 1990. Swelling and Gelatinization of Cereal Starches. I. Effects of Amylopectin, Amylose and Lipids. Cereal Chem. 67:551.
- Villareal, C.P. dan B.O. Juliano, 1987. Varietal Differences in Quality Characteristics of Puffed Rice. Cereal Chem. 64:337.
- Winarno, F.G., 1984. Kimia Pangan dan Gizi. PT. Gramedia, Jakarta.

Agritech Vol. 18 No. 1 halaman 24-28