ANALISIS STOKHASTIK UNTUK CURAH HUJAN BULANAN DAN 10 HARIAN PADA STASIUN HUJAN DI DAERAH IRIGASI CIKEUSIK, CIREBON, JAWA BARAT

Oleh:

*)Bambang J.A., **) Putu Sudira, **) Bambang Hari P.

i. Pendahuluan

Data yang digunakan pada perencanaan, perancangan dan studi penelitian sumber daya air pada umumnya memiliki keterbatasan pencatatan. Hal ini merupakan suatu kekurangan serius, sebab suatu rangkaian data penelitian yang didapat tidaklah identik dengan kejadian di masa mendatang, sehingga sifat data tersebut kurang memberikan informasi untuk suatu perancangan yang teliti (Kottegoda, 1980).

Untuk mengatasi hal tersebut maka digunakan model stokhastik untuk menurunkan data, yang menirukan sifat statistik data tercatat. Melalui fungsi matematis dapat dibuat rangkaian waktu yang berbeda dari rangkaian waktu hasil pencatatan, tetapi dengan tetap mempertahankan sebagian dari sifat-sifat statistiknya.

Tiap-tiap runtun waktu dikonstruksi sedemikian rupa sehingga kejadian-kejadiannya mempunyai peluang yang sama seperti runtun hasil pencatatan.

Tujuan dari penelitian ini adalah untuk mensimulasikan rangkaian data hujan

bulanan dan 10 harian pada stasiun hujan di D.I. Cikeusik untuk digunakan sebagai input dalam pengelolaan air irigasi.

II. Tinjauan Pustaka

Ada beberapa hal penting yang harus diperhatikan dalam perkiraan dan pemakaian model stokhastik, yaitu :

- Jika data hasil pencatatan tidak cukup menggambarkan suatu proses, maka praktis tidak dapat dipakai sebagai analisis.
- Dari analisis pendahuluan, apabila ada maka dimungkinkan untuk mengenali dan meralat kesalahankesalahan pada pengukuran dan pencatatan.
- 3. Suatu model, di suatu pihak dapat diatur bentuknya di lain pihak harus dapat menjaga hubungan antara sifatsifat statistik dan hidrologi dari suatu proses, sehingga rangkaian data dari berbagai peristiwa yang mungkin terjadi dapat dibangkitkan seperti kejadian sebenarnya (Kottegoda, 1980).

2.1. Model Swaregresi (autoregressive)

Model swaregresi disebut juga rantai Markov, menurut nama ahli matematika Rusia A.A. Markov (1856 — 1922).

^{*)}Mahasiswa FTP-UGM Jurusan Mekanisasi Pertanian.

^{**)}Staf Pengajar FTP-UGM Jurusan Mekanisasi Pertanian.

hujan

pagai

yang

ukup

naka

pagai

abila

ntuk

han-

pen-

apat

arus

sifat-

uatu

dari ter-

(eja-)).

dan

Pemakaian model ini sangat menarik dalam hidrologi karena :

- Bentuk swaregresi mempunyai type intuitif dari ketergantungan waktu (harga variabel pada waktu sekarang tergantung pada harga waktu yang lalu),
- 2) Merupakan model paling sederhana untuk digunakan.

Di kalangan analisis stokhastik banyak dipakai anggapan bahwa data hidrologi dapat dipisahkan menjadi komponen yang menunjukkan kecenderungan (trend), komponen periodik dan komponen acak. Komponen kecenderungan dan komponen periodik disebut komponen deterministik dan komponen acak sering disebut komponen stokhastik. Model ini digunakan pada komponen stokhastiknya, ini berarti yang dianalisis hanya komponen acaknya saja yang sudah terikat pada suatu nilai deterministik yang sudah pasti.

2.1.1. Formulasi Matematik Model Swaregresi Harkat p, ARp

Model swaregresi harkat p, AR(p) untuk suatu variabel Y, dapat ditulis sebagai berikut:

$$Y_{t} = \mu + \beta_{1}(Y_{t-1} - \mu) + \beta_{2}(Y_{t-2} - \mu) + \dots + \beta_{p}(Y_{t-p} - \mu) + \xi t$$

=
$$\mu + \sum_{i=1}^{p} \beta_{i}(Y_{t-i} - \mu) + \xi t$$
 (2.1)

di mana:

- Y, adalah deret stasioner yang tergantung waktu yang terdistribusi normal.
- β_i , i = 1, 2, 3, p adalah parameter swaregresi

ξ₁ adalah komponen acak atau deret yang tidak tergantung waktu yang bebas dari Y_{*}, dan juga terdistribusi normal dengan rata-rata nol dan variansi σ²_{*}, N(o, σ²_{*}).

2.1.2. Sifat-sifat Model Swaregresi

Sifat-sifat utama model swaregresi adalah harga ekspektasi, variansi dan autokorelasi dari model pada persamaan (2.1), adalah : $E(Y_r) = \mu$, $E(\xi_r) = 0$, $var(Y_r) = E(Y_r^2) = \sigma^2 var(\xi_r) = E(\xi_r^2) = \sigma_{\xi}^2 \rho k = E(Y_r, Y_{t-k})/\sigma^2 dan E(\xi_r, Y_{t-k}) = 0$, untuk $k = 1, 2, 3, \ldots$ Parameter σ^2 dan μ diestimasi dari data.

2.2. Model Thomas-Fiering

Model Thomas-Fiering biasanya dipakai untuk membangkitkan debit sungai perennial, yaitu sungai yang selalu mengalir sepanjang tahun atau dengan kata lain sungai yang tidak pernah nol debitnya. Untuk data hujan yang dengan sendirinya mempunyai nilai data nol pada bulan-bulan kering, sebaiknya digunakan cara khusus agar data turunan mempunyai frekuensi nilai nol yang mendekati frekuensi nilai nol data observasinya.

2.2.1. Formulasi Matematik Model Thomas-Fiering

Thomas-Fiering memberikan persamaan sebagai berikut :

$$Q_{i,j} = \overline{Q}_j + b_j(Q_{i-1,j-1} - \overline{Q}_{j-1}) + \xi_i S_j \sqrt{1 - rj^2}.....(2.2)$$

dengan:

- Q = data hidrologi (hujan, debit, atau lainnya)
- i = urutan dalam rangkaian data

ntai tika 22).

1

- j = interval waktu dalam 1 tahun (12 bulan)
- b, = koefisien regresi antara waktu ke-j dan j—1
- S = Simpangan baku
- r = koefisien korelasi antara waktu kej dan j—1
- ξ = bilangan acak, biasanya merupakan variabel bebas bersebaran normal, dengan rerata 0 dan variansi 1, N(0,1²).

2.2.2. Sifat-sifat Model Thomas-Fiering

- Variasi musiman ditunjukkan oleh penggunaan hubungan regresi antara waktu ke j dan j—1.
- 2. Model ini menganggap adanya keteguhan antara waktu ke j dan j—1.
- 3. Karena distribusi normal tidak memberikan probabilitas nol kepada nilai-nilai negatip, maka model tersebut akan memberikan data hidrologi negatip. Data hidrologi yang negatip ini hanya digunakan untuk menggenerasi data hidrologi selanjutnya, kemudian dibuang. Dengan kata lain data hidrologi yang negatip tersebut tidak boleh dicantumkan sebagai hasil simulasi, tapi diganti dengan nilai nol (Soemarto, 1987).

Langkah pertama dalam membuat data turunan adalah memilih distribusinya. Dalam memilih suatu distribusi, tidak ada suatu dasar prioritas karena catatan data observasi yang relatif pendek yang biasa dijumpai tidak mampu menetapkan sifat-sifat (parameter) dari distribusinya. Maka biasanya distribusi yang dipilih adalah yang cocok dengan data observasi yang berada dalam batas-batas kriteria yang masih diperkenankan. Pemilihan ini dipengaruhi oleh kenyataan bahwa distribusi-distribusi tertentu cocok untuk teknik-

teknik pembangkitan sementara distribusi lainnya sangat sulit diterima.

Banyak peneliti mendapatkan bahwa pembangkitan data hidrologi dengan menggunakan distribusi normal merupakan metode yang paling efektip. Beberapa teknik untuk merubah deret data supaya mendekati normal telah banyak dipakai. Pengubahan ini dikenal sebagai pemutihan (prewhitening).

Model ini mengijinkan adanya ketak-stasioneran dalam data hidrologi yang tercatat. Untuk menurunkan data hidrologi bulanan maka data dari setiap bulan diregresikan terhadap bulan sebelumnya, sehingga didapat 12 persamaan regresi linear.

III. Landasan Teoritis

3.1. Estimasi Parameter-parameter Model Swaregresi

3.1.1. Estimasi parameter β,

Jika persamaan (2.1) dikalikan dengan Y_{t-1} dan diekspektasikan, maka :

$$E(Y_{t}, Y_{t-1}) = \beta_{1} E(Y_{t-1}, Y_{t-1}) + \beta_{2} E(Y_{t-2}, Y_{t-1})$$

$$+ \dots + \beta_{r} E(Y_{t-p}, Y_{t-1}) + E(\xi t, Y_{t-1})$$

$$\rho_{1} = \beta_{1} \rho_{0} + \beta_{2} \rho_{1} + \dots + \beta_{r} \rho_{p-1}$$

Selanjutnya, jika persamaan (2.1) berturut-turut dikalikan dengan $Y_{t\cdot 2}$, Y_{t-3} , ..., Y_{t-p} dan diekspektasikan, maka diperoleh bentuk matrik sebagai berikut :

$$\begin{bmatrix} \rho_{1} \\ \rho_{2} \\ \vdots \\ \rho_{p} \end{bmatrix} = \begin{bmatrix} 1 \rho_{1} \rho_{2} & \dots & \rho_{p-1} \\ \rho_{1} 1 \rho_{1} & \dots & \rho_{p-2} \\ \vdots \\ \rho_{p-1} \rho_{p-2} \rho_{p-3} & 1 \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{p} \end{bmatrix}$$
(3.1)

ah

nal

Apabila ''r'' adalah estimasi dari ρ , dan untuk model AR1, persamaan (2.1) menjadi :

AR1 =
$$Y_t = \mu + \beta_1(Y_{t-1} - \mu) + \zeta_1 \dots (3.2)$$

dan persamaan (3.1) menjadi :

$$r_1 = \beta_1 \dots (3.3)$$

Untuk model AR2, persamaan (2.1) menjadi :

AR2 =
$$Y_r = \mu + \beta_1 (Y_{t-1} - \mu) + \beta_2 (Y_{t-2} - \mu) + \xi_t \dots$$
 (3.4)

dan persamaan (3.1) menjadi :

$$r_1 = \beta_1 + \beta_2 r_1 \text{ dan } r_2 = \beta_1 r_1 + \beta_2$$

sehingga:

$$\beta_2 = (r_2 - r_1^2)/(1 - r_1^2) \text{ dan}$$

 $\beta_1 = r_1(1 - r_2)/(1 - r_1^2) \dots$ (3.5)

dimana:

 r_1 = koefisien korelasi geser (lag)—1 r_2 = koefisien korelasi geser (lag)—2 (r_1 dan r_2 diestimasi dari data).

3.1.2. Estimasi parameter o 2,

Estimasi parameter σ_{ξ}^2 didapat dengan mengalikan persamaan (2.1) dengan Y, dan kemudian diekspektasikan:

$$E(Y_t, Y_t) = \beta_1 E(Y_{t-1}, Y_t) + \beta_2 E(Y_{t-2}, Y_t)$$

$$+ \dots + \beta_p E(Y_{t-p}, Y_t) + \xi_t Y_t$$

$$\sigma^2 = \beta_1 \rho_1 \sigma^2 + \beta_2 \rho_2 \sigma^2 + \dots + \beta_p \rho_p \sigma^2 + \sigma^2,$$

atau

$$\sigma_{\xi}^{2} = \sigma^{2}(1 - \sum_{j=1}^{p} \beta_{i} \rho_{j})...(3.6)$$

Untuk AR1, didapat :

$$\sigma_{\xi}^{2} = \sigma^{2}(1 - r_{1}^{2}) \dots (3.7)$$

Untuk AR2, didapat :

$$\sigma_{r}^{2} = \sigma^{2}(1 - \beta_{1}r_{1} - \beta_{2}r_{2}).. (3.8)$$

3.2. Uli Stasioneritas Data

Agar supaya model AR(p) dengan parameter konstan adalah stasioner, parameter $\beta_1, \beta_2, ..., \beta_p$ harus memenuhi kondisi stasioneritas. Kondisi tersebut dipenuhi apabila akar-akar dari persamaan karakteristik:

$$b^{p} - \beta_{1}b^{p-2} - ... - \beta_{p} = 0$$
 (3.9)

terletak di dalam lingkaran satuan yang diberikan $b^2 = 1$.

Jadi |
$$b_i$$
 | < 1, $i = 1, ... p$

Untuk AR1, persamaan (3.9) menjadi $b-\beta_1=0$, sehingga $\beta_1<1$ adalah kondisi stasioner untuk model AR1 atau $-1<\beta_1<1$. Untuk AR2, persamaan (3.9) menjadi : $b^2-\beta_1b-\beta_2=0$, dengan penyelesaian persamaan kuadrat dapat ditentukan nilai b_1 dan b_2 . Untuk kondisi stasioner, nilai b_1 dan b_2 harus berada dalam lingkaran satuan (Kottegoda, 1980).

3.3. Estimasi Parameter-parameter Model Thomas-Fiering

Supaya parameter-parameter yang dihitung dalam persamaan regresi memiliki ketepatan yang cukup, disarankan agar cara ini digunakan dengan hatihati bila data yang ada kurang dari 12 tahun (Clarke, 1973).

Koefisien regresi antara waktu ke-j dan j—1, diberikan rumus : bj = r_rS_r/S_r , dengan : r_r = koefisien korelasi antara waktu ke-j dan j—1.

$$r_{j} = \frac{\Sigma(Q_{i, j-1} - \overline{Q}_{j-1})(Q_{i, j} - \overline{Q}_{j})}{\sqrt{\left\{\Sigma(Q_{i, j-1} - \overline{Q}_{j-1})^{2}\Sigma(Q_{i, j} - \overline{Q}_{j})^{2}\right\}}}$$

dengan r_i , S_i dan S_{i-1} diestimasi dari data.

3.4. Uji Keabsahan Model

Dalam pemilihan model yang sesuai untuk pembangkitan data, diadakan pembandingan harga parameter-parameter stokhastik data bangkitan (generate) dan data observasi. Karakteristik-karakteristik yang perlu dicek adalah: harga rata-rata, simpangan baku dan koefisien korelasi antara data bangkitan dan data observasi (Srikanthan, 1983).

IV. Metodologi

Perumusan Model dan Hitungan

Misalnya, diberikan rangkaian data curah hujan $\{y_1, y_2, ..., y_r, ..., y_N\}$ selama N tahun pencatatan :

				interval	waktu	dalam 1 tahun
		1	2	3	4	t п
tahun	1	Y ₁₁	Y ₁₂	Y12	Y.,	Y _{1t} Y _{1m}
tahun	2	Y ₂₁	Y22	Y23	Y24	Y _{2t} Y _{2m}
tahun	3	Y ₃₁	Y ₃₂	Y33	Y ₃₄	Y _{3t} Y _{3m}
			,			
			•			
tahun	N.	Y _{N1}	Y _{N2}	Y _{N3}	Y _{N4}	Y _{Nt} Y _{Nm}

Prosedur untuk mengestimasi μ , β_1 dan $\sigma^2_{\ \xi}$ adalah :

(i) Hitung $\overline{Y} = \begin{array}{c} N.m \\ \Sigma \\ t=1 \end{array}$ Y,/Nm; \overline{Y} harga estimasi

Outp

Ν

0

2

Ν

yanç Fierii

seba

rang y_N } 1. U 1 y_i

> d p

- dari μ
- (ii) Hitung :

$$r_{1} = \sum_{t=1}^{Nm-1} (Y, -\overline{Y})(Y_{t-1} - \overline{Y}) / \sum_{t=1}^{Nm} (Y, -\overline{Y})^{2}$$

$$Nm-2$$

$$Nm$$

$$r_2 = \sum_{t=1}^{Nm-2} (Y_t - \overline{Y})(Y_{t-2} - \overline{Y}) / \sum_{t=1}^{Nm} (Y_t - \overline{Y})^2$$
(iii) Hitung: β_1 dan β_2

Untuk AR1 :
$$\beta_1 = r_1$$

Untuk AR2 : $\beta_1 = r_1 (1 - r_2)/(1 - r_1^2)$
 $\beta_2 = (r_2 - r_1^2)/(1 - r_1^2)$

(iv) Hitung variansi komponen acak σ^2_{ζ} Untuk AR1 :

$$\sigma^{2}_{\zeta} = \sum_{t=1}^{Nm} (Y_{t} - \overline{Y})^{2} (1 - r_{1}^{2})(Nm - 1)/(Nm - 3)$$

$$\sigma^{2}_{\xi} = \sum_{t=1}^{Nm} (Y_{t} - \overline{Y})^{2} (1 - \beta_{1} \cdot r_{1} - \beta_{2} \cdot r_{2})$$

$$(N - 2)/(N - 5)$$

stimasi

 $(, -\overline{Y})^2$

 σ^2

im - 3

Output model AR2 distribusi normal, N(0, σ^2)

t	Y _{t-2}	Y _{t-1}	$\overline{Y} + \beta_1 (Y_{t-1} - \overline{Y}) + \beta_2 (Y_{t-2} - \overline{Y})$	(b) ξ _π	(a) + (b) Y,
0	Y _{N(m-1)}				
1		Y_{Nm}	_		
2			$\overline{Y} + \beta_1(Y_{Nm} - \overline{Y}) + \beta_2(Y_{N(m-1)} - \overline{Y})$	ξ 1	Z_1
3	Y _{Nm}	Z_{i}	$\frac{\overline{Y} + \beta_1(Y_{Nm} - \overline{Y}) + \beta_2(Y_{N(m-1)} - \overline{Y})}{\overline{Y} + \beta_1(Z_1 - \overline{Y}) + \beta_2(Y_{Nm} - \overline{Y})}$	ζ,	Z_2
٠					
N	$Z_{N=3}$	Z_{N-2}	$\overline{Y} + \beta_1(Z_{N-2} - \overline{Y}) + \beta_2(Z_{N-3} - \overline{Y})$	ξ _{N-1}	Z_{N-1}

Untuk menurunkan data hidrologi yang mempunyai nilai nol, Thomas-Fiering mengemukakan modifikasi rumus sebagai berikut : misalnya, diberikan rangkaian data curah hujan $\{y_1, y_2, ..., y_N\}$ selama N tahun pencatatan.

- Untuk j = bulanan (j = 1 ... 12) dalam 1 tahun, dihitung jumlah data tercatat yang tidak nol (n_j) dalam bulan yang sama selama N tahun, kemudian dihitung probabilitas data tidak nol. p_j = n_j/N.
- Dihitung rata-rata dan variansi bulanan. Untuk data yang mengandung nilai nol, perhitungan rata-rata dan variansi hanya dilakukan terhadap bulan-bulan yang tidak nol.
- 3. Pembangkitan rangkaian turunan untuk data bulanan adalah sebagai berikut:
 - a. untuk bulan-j, pilih bilangan pseudo random dari distribusi merata, jika angka ini lebih kecil dari p, maka ada hujan yang terjadi dalam bulan j, dan sebaliknya.

- b. jika tidak ada hujan terjadi pada bulan j—1, ulangi untuk bulan-j.
- c. jika hujan terjadi pada bulan-j, dan juga terjadi pada bulan j — 1, regresikan hujan pada kedua bulan tersebut.
- d. Mengubah bilangan pseudo random menjadi bersebaran Normal dengan rata-rata nol dan variansi
 1, N(0,1²) dengan bantuan rumus Box-Muller.

Interval waktu dalam 1 tahun

		Jan	Feb	Mar	Apr	Des
Tahun	1	Q ₁	Q_2	Q_3	Q ₄	Q ₁₂
Tahun	2	Q _{13"} .	Q ₁₄	0		Q ₂₄
Tahun	3	Q ₂₅	Q ₂₆	0		Q ₃₆
Tahun	10	Q ₁₀₉	Q ₁₁₀	Q ₁₁₁	Q ₁₁₂	Q ₁₂₀
p,	=	1	1	0,8	0,9	1
mean	=	ā,	Q,	$\bar{Q}_{\scriptscriptstyle M}$	Q۸	Q _D
var	=	S, 2	S_F^2	S _M 2	S, 2	
r,	=	r_{JD}	r _{FJ}	r _{MJ}	r _{AM}	r _{DN}

Output model Thomas-Fiering distribusi Normal, N(0,1²).

Tahun 1

$$\begin{array}{lll} Q_{F} & = \ \overline{Q}_{F} \ + \ r_{F,J} \, S_{F} / S_{J} \, (Q_{J} - \overline{Q}_{J}) & + \ \xi_{2} \, S_{F} \, \sqrt{1 - r_{F,J}^{2}} \\ Q_{M} & = \ \overline{Q}_{M} \ + \ r_{MF} \, S_{M} \, / S_{F} (Q_{F} - \overline{Q}_{F}) & - \ \xi_{3} \, S_{N} \, \sqrt{1 - r_{MF}^{2}} \\ Q_{A} & = \ \overline{Q}_{A} \ + \ r_{AM} \, S_{A} \, / S_{M} \, (Q_{M} - \overline{Q}_{M}) + \ \xi_{4} \, S_{A} \, \sqrt{1 - r_{AM}^{2}} \end{array}$$

$$Q_D = \overline{Q}_D + r_{DN} S_D / S_N (Q_N - \overline{Q}_N) + \xi_s S_D \sqrt{1 - r_{DN}^2}$$

dimana : Q, adalah nilai generasi pertama pada bulan Januari.

$$Q_J = \overline{Q}_J + S_J(\zeta_1)$$

Untuk tahun ke 2, 3 dan seterusnya sama, akan tetapi nilai generasi pertama pada bulan Januari (Q_J) berubah tergantung pada bilangan acak (ξ) yang menyertainya.

V. Hasil Analisis dan Pembahasan

Data Hujan

. Des

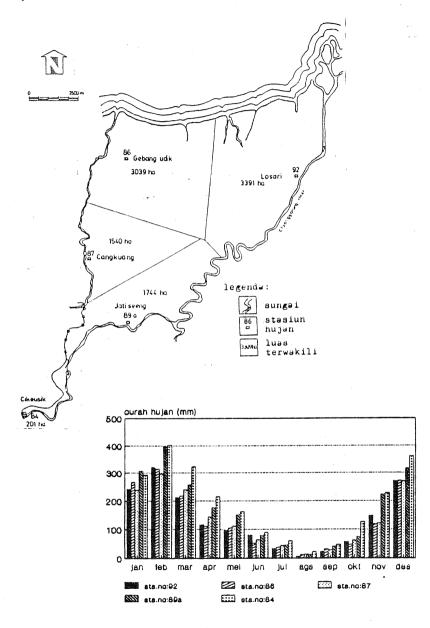
Q₁₂ Q₂₄ Q₃₆

Q₁₂₀

Q̄_D S_D ² r_{DN}

ousi

er-


ya

na

ın-

ng

). *1*

Gambar 1. Rerata surah hujan bulanan

Agritech Vol. 11. No. 1

Rata-rata data hujan dari lima stasiun di D.I. Cikeusik ditunjukkan dalam gambar 1. Kelima stasiun menunjukkan fluktuasi dari bulan ke bulan yang sama. Stasiun no. 92 dan no. 86 terletak di bagian hilir, stasiun no. 87 dan no. 89a terletak di bagian tengah dan stasiun no. 84 terletak di bagian hulu dari D.I. Cikeusik. Data curah hujan dari tiga stasiun yaitu no. 92, 89a dan 84 dipilih untuk mewakili masingmasing daerah.

Dari hasil analisis keandalan data yang meliputi uji homogenitas, uji konsistensi dan uji keteguhan pada kelima stasiun hujan menunjukkan hasil yang dapat diterima untuk dipakai pada analisis stokhastik. Sedangkan dari analisis deret berkala yang meliputi kecenderungan (trend) dan periodisitas menunjukkan hasil yang dominan.

Tabel 1. Nilai koefisien korelasi

	Data	Observasi Bul	anan	Data	Observasi 10 I	Harian
	no. 92	no. 89a	no. 84	no. 92	no. 89a	no. 84
AR-1 AR-2 TF-1	0.6504 0.6293 0.825	0.923 0.8811 0.9161	0.713 0.7762 0.9091	0.9019 0.8789 0.8931	0.9109 0.892 0.8465	0.8914 0.8704 0.8432

Model AR1, AR2 dan TF1 diterapkan pada tiga stasiun terpilih. Perhitungan dilakukan dengan menggunakan komputer dalam bahasa BASIC. Ketiga model menunjukkan hubungan yang bersifat linier antara rata-rata data observasi dan data bangkitan dengan batas keyakinan (Confidence limit) sebesar 95% (Tabel 1).

Pada masing-masing bulan, tidak ada satu modelpun yang dapat menghasilkan nilai data bangkitan yang memuaskan. Tetapi model AR1 yang diterapkan pada data hujan 10 harian dan model TF1 yang diterapkan pada data hujan bulanan lebih memuaskan dalam menghasilkan variasi bulan basah dan bulan kering. Model AR2 dan TF1 yang diterapkan pada data hujan 10 harian dan model AR1 dan AR2 yang diterapkan pada data bulanan menghasilkan jumlah bulan basah yang sedikit apabila dibandingkan dengan data observasinya.

Dengan analisis regresi dan korelasi, tabel 2 dan 4 menunjukkan hubungan parameter statistik yang memuaskan. Nilai simpangan baku dari data bangkitan lebih kecil daripada data observasi, hal ini menunjukkan variasi atau penyebaran dari data bangkitan yang kecil.

Untuk model yang diterapkan pada data logaritma ditunjukkan pada tabel 3 dan 5. Transformasi ke bentuk logaritma dimaksudkan agar data observasi mengikuti sebaran normal.

Data hujan hasil bangkitan dapat dipakai untuk penalaran suatu rancangan atau penetapan suatu cara pengoperasian di bidang irigasi. Untuk ketersediaan data hujan yang cukup, analisis stokhastik dapat menghasilkan petunjuk yang berarti dalam menetapkan kebijaksanaan pengelolaan suatu daerah irigasi. Khususnya menyangkut masalah pelayanan air irigasi, serta pengaturan jadwal tanam.

Tabel 2

no. 92

rata-ra

simp.

no. 89a

sımp. t

no. 84

simp.

Tabel

rata-ra

simp.

no. 89

simp.

no. 84

simp.

Tabel 2. Perbandingan parameter-parameter statistik data hujan bulanan antara data observasi dan data bangkitan dengan model TF-1 (mm) berdasarkan data asli (tahun 1975 — 1989)

data

kon-

celima yang pada dari iliputi lisitas

alasi,

ıgan

kan. kitan al ini aran

ada el 3 itma ∍ng-

apat gan asiaan stik peraan asi. elawal

. 1

no. 92		jan	feb	mar	apr	mei	jun	jul	ags	sep	okt	nov	des
rata-rata	obs	243	322	214	118	99	81	35	8	25	59	148	272
	gen	244	322	214	127	95	78	32	22	12	6	122	259
simp. baku	obs gen	98 1	110 1	80 1	71	68 32	61 26	40 18	17 7	29 18	58 18	73 9	109 4
no. 89a													
rata-rata	obs	308	398	258	177	151	79	46	13	42	74	223	316
	gen	308	398	258	177	151	85	50	25	34	25	160	316
simp. baku	obs	129	209	121	112	195	60	46	25	46	78	122	141
	gen	1	1	1	0	1	0	25	10	34	38	61	22
no. 84													
rata-rata	obs	294	402	323	215	163	89	61	22	47	126	227	360
	gen	294	401	323	215	163	103	66	41	25	37	152	324
simp. baku	obs	101	160	87	99	101	70	63	31	55	95	129	130
	gen	1	1	1	1	0	0	33	22	35	51	59	28

Tabel 3. Perbandingan parameter-parameter statistik data hujan bulanan antara data observasi dan data bangkitan dengan model TF-1 (mm) berdasarkan data logaritma (tahun 1975 — 1989)

no. 92		jan	feb	mar	apr	mei	jun	jul	ags	sep	okt	nov	des
rata-rata	obs	243	322	214	118	. 99	81	35	8	25	59	148	272
	gen	227	304	186	98	79	48	28	26	8	5	82	239
simp. baku	obs	98	110	80	71	68	61	40	17	29	58	73	109
	gen	11	11	31	20	16	21	23	11	11	10	29	24
no. 89a													
rata-rata	obs	308	398	258	177	151	79	46	13	42	74	223	316
	gen	1423	310	1509	370	127	107	94	43	89	503	177	265
simp. baku	obs	129	209	121	112	195	60	46	25	46	78	122	141
	gen	2427	148	3 66 8	613	94	167	98	61	65	1413	169	112
no. 84													
rata-rata	obs	294	402	323	215	163	89	61	. 22	47	126	227	360
	gen	1407	317	2089	1459	130	125	69	109	92	1781	159	269
simp. baku	obs	101	160	87	99	101	70	63	31	55	95	129	130
	gen	2401	294	5047	2410	88	123	35	194	142	5173	114	112

Tabel 4. Perbandingan parameter-parameter statistik data hujan 10 harian antara data observasi dan data bangititan dengan model AR-1 (mm) berdasarkan data asli (tahun 1975 — 1989)

no. 92	e sqo	an	fe	feb	mar obs	2 5	apr	Lega .	mei	- 5	lm sqo	_ E	13 sq	200	808 808		5	1	okt	E	100	S	
rata-rata	100 87 56	68 70 63	106 20 96	67 72 84	88 78 48	81 73 48	56 28 35	50 43	21 33 45	33 29 29 42	32 37	33					5 12	17 18	20 20 5	25 45	15 15	105 64	gen 60 46
	69 50 34	21 26 23	69 54 58	24 24 15	69 41 33	19 12 25	42 21 32	39 30 27	27 36 29	788 36 36	29 33 17	28 28 21 23	28 15 15	22 ′ 24 ′ 10		,- ,- ,-			31 20 20	78 30 90	48 20 26	103 81 62 66	- - - - - - - - - - - - - - - - - - -
no. 89 a																							
rata-rata	132 103 72	89 72 67	128 149 120	8 23 8	97 91 70	83	70 57 51	43 49	54 50 47	56 47 35	41 26 12	33 16 23	\$ 18 5 21	16	3 8 5 21 21	71 17 1	, 16 7 24 7 24	2 2 5	8 6 8	43	27	22 82	72 73
simp. baku	81 76 36	39	95 128 68	30	78 56 57	43 19 37	57 44 60	30	65 43 51	4 4 4	. 43 26 18	32 15 15	22 22 22	23 7				34 39	35 8 8 26	38 38 84 84	27 31 37	83 63 66 69	31 31 31
rata-rata	106 102 85	83 76 68	136 156 109	83 94	116 107 99	96 95 79	99	90 76 61	65 53 45	76 70 57	50 23 17	25 30	2 8 2	18 27 14	9 12 3 17 10 27	16	25 25 4 27 16	33	39	52 80 85	55	158 87	88 88
simp. baku	68 74 53	39 39	90 106 43	32 31 27	62 50 63	37 20 33	64 48 33	36 33	54 46 38	33 42	41 25 20	30 17 18						54 37 43	45 20 31	38 71 77			23.82

Tabel 5. Perbandingan parameter-parameter statistik data hujan 10 harian antara data observasi dan data bangkitan dengan model AR-1 (mm) berdasarkan data logaritma (tahun 1975 — 1989)

8		5	để	٩	mar	<u>.</u>	apr	<u>.</u>	mei		m	_	3		808		8	_	20) ou		-	
10. 36	sqo	Den	ops	ueg Gen	sqo	ßen	sqo	Den	sqo	gen	sqo	Gen	. sqo		ops	6	sqo	5	sqo	5	sqo	16n	ops geo	
rata-rata	100 87 56	63 79	106 20 96	88 89 89	88 78 48	85 63 73	56 35	98 93 33	21 33 45	63 39 52	32 37 12	59 22	4 0 1	£1 £1 01	- 4 6	6 11 8	5 8 13	01 41 11	17 18 24	15 23 17	25 45 78	24 26 40	501 801	41 65 66
simp. baku	69 50 34	33 35 37	69 54 58	65 68 45	69 41 33	49 33 55	42 21 32	71 87 26	27 36 29	101 47 46	29 33 17	68 56 18	28 15 15	119	4 11 9	8 17 6	13 61	13 29 9	33 19 31	23 38 21	30 80	23 17 31	81 62 66	24 40 33
no. 89a																								
rata-rata	132 103 72	88 91	128 149 120	95 110 126	97 91	120 90 94	70 57 51	138 88 63	54 50 47	71 75 72	41 26 12	44 46 20	15 13	12 17 10	დ 4	289	7 17 18	12 23 27	21 21 32	33 24 25	43 78 102	28 39 64	122 82 112	61 76 92
simp. baku	81 76 36	60 41 40	95 128 68	54 70 64	78 56 57	73 52 86	57 44 60	109 118 51	65 43 51	75 64 77	43 26 18	43 67 21	22 22 23 23	± 8 6	8 <u>6</u> 6	4 5 4	14 26 22	14 32 39	41 34 39	45 48 27	38 58 84	24 31 60	88 88 86	25 33
No. 84																								
rata-rata	106 102 85	111 93	136 156 109	115 127 142	116 107 99	148 111 131	99 71 44	167 182 96	65 53 45	99 108 107	50 23 17	88 61 99	2 8 8	21 15 26	9 8 0	11 11 11	16 17	17 24 17	40 33 53	36 53	52 80 95	5.1 5.2 7.6	158 87 115	80 131 120
simp. baku	68 74 53	65 71	90 106 43	98 91 69	62 50 63	70 58 92	64 48 33	119 139 62	54 46 38	57 85 80	41 25 20	118 80 226	31 25 26	27 17 24	18 8 23	13	27 24 24	24 48 16	54 37 43	41 79 59	38	48 46 68	90 41 75	44 70 46

Vo. 1

VI. Kesimpulan

Model AR1 lebih cocok diterapkan untuk memperpanjang data hujan 10 harian. Sedangkan model TF1 lebih cocok diterapkan untuk data hujan bulanan pada stasiun hujan di Daerah Irigasi Cikeusik, Cirebon, Jawa Barat.

Daftar Pustaka

Clarke, R.T., 1973. "Mathematical Models in Hydrology", Food and Agricultural Organization of The United Nations, Roma.

- Kottegoda, N.T., 1980, "Stochastic Water Resources Technology", The Macmillan Press Ltd., London.
- Soemarto, 1987, ''Hidrologi Teknik'', Usaha Nasional, Surabaya.
- Srikanthan, R. dan McMahon, T.A., 1983, "Stochastic Simulation of Daily Rainfall for Australian Stations", TRAN-SACTIONS of the ASAE. USA.