Characterization of Cellulose Acetate Membrane at Different Thicknesses on Sucrose Concentration by Forward Osmosis

Aida I. Mohamad Idris(1), Siti Mazlina Mustapa Kamal(2*), Alifdalino Sulaiman(3), Rozita Omar(4), Munira Mohammad(5)

(1) Centre for Water Research, Faculty of Engineering, Built Environment & Information Technology, SEGi University, 47810 Kota Damansara, Malaysia
(2) Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
(3) Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
(4) Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
(5) Centre for Water Research, Faculty of Engineering, Built Environment & Information Technology, SEGi University, 47810 Kota Damansara, Malaysia
(*) Corresponding Author


Forward osmosis (FO) requires a specific membrane structure for applications like juice concentration. The phase inversion method was used to make cellulose acetate (CA) FO membranes. The solvents used were acetone and 1,4-dioxane. Additives included polyvinylpyrrolidone (PVP), methanol, and maleic acid were used in the preparation of CA membrane, which make it easier to improve a FO membrane's permeability. The performance of fabricated FO membrane and their  morphology were evaluaed with different casting thicknesses of 150, 200, and 250 µm. Experiment works begins with an hour of membrane flux testing, deionized water was used as feed solution and 1 M NaCl as draw solution. The membrane was then used to concentrate 0.5 M sucrose with NaCl for 240 minutes (2 M). Contact angle, porosity, and scanning electron miscroscopy (SEM) were used to characterize membrane properties and morphology. High water flux (2.25 L/m2hr) and high porosity (75.86%) were found at 200 µm casting thickness. Water permeability of sucrose concentration at 200 µm casting thickness had the highest flux (2.39 L/m2hr). The results also show that flux values vary with membrane thickness. All membranes were hydrophilic with contact angles below 90°.  A 200 µm casting thickness produces a membrane with smooth and evenly distributed pores, according to morphology analysis. Structural parameter (S) values had a proportional relationship with the FO membrane thickness, which thinner membrane potentially reduces the internal concentration polarization (ICP).


Cellulose Acetate, Contact Angle, Forward Osmosis Membrane, Membrane Porosity, Membrane Thickness

Full Text:



Ahmed, D. F., Isawi, H., Badway, N. A., Elbayaa, A. A., & Shawky, H., 2021. “Graphene oxide incorporated cellulose triacetate/ cellulose acetate nanocomposite membranes for forward osmosis desalination.” Arabian J. of Chem., 14(3), 102995. doi:10.1016/j.arabjc.2021.102995

Al Obaidani, S., Curcio, E., Macedonio, F., Diprofio, G., Al Hinai, H., and Drioli, E., 2008. ”Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation.” J. of Membr. Sci., 323(1), 85–98. doi:10.1016/ j.memsci.2008.06.006

Babu, B. R, Rastogi N.K., and Raghavarao, K.S.M.S., 2006. “Effect of process parameters on transmembrane flux during direct osmosis.” J. of Membr. Sci., 280(1-2),185-194. Doi:10.1016/j.memsci.2006.01.018

Chan, M. K., Ong, C. S., and Kumaran, P., 2018. “Development and characterization of glycerol coating on the PAN/PVDF composite membranes.” IOP Conference Series: Materials Science and Engineering, 458, 012006. doi:10.1088/1757-899x/458/1/012006

Chanukya, B. S., and Rastogi, N. K., 2017. “Ultrasound assisted forward osmosis concentration of fruit juice and natural colorant.” Ultrason. Sonochem., 34, 426–435. Doi:10.1016/j.ultsonch.2016.06.020

Chen, X., Xu, J., Lu, J., Shan, B., and Gao, C., 2017. “Enhanced performance of cellulose triacetate membranes using binary mixed additives for forward osmosis desalination.” Desalination, 405, 68–75. doi:10.1016/j.desal. 2016.12.003

Chia, W. Y., Khoo, K. S., Chia, S. R., Chew, K. W., Yew, G. Y., Ho, Y.-C., Show, P.L., andChen, W.-H., 2020. “Factors affecting the performance of membrane osmotic processes for bioenergy development.” Energies, 13(2), 481. doi:10.3390/ en13020481

Chun, Y., Mulcahy, D., Zou, L., and Kim, I., 2017. “A short review of membrane fouling in forward osmosis processes.” Membr., 7(2),30. doi:10.3390/membranes7020030

Etemadi, H., Yegani, R., and Seyfollahi, M., 2017. “The effect of amino functionalized and polyethylene glycol grafted nanodiamond on anti-biofouling properties of cellulose acetate membrane in membrane bioreactor systems. Sep. and Purif. Technol.,177,350–362. doi:10.1016/j.seppur.2017.01.013

Garcia-Castello, E. M., McCutcheon, J. R., and Elimelech, M., 2009. “Performance evaluation of sucrose concentration using forward osmosis.” J. of Membr. Sci., 338(1-2), 61–66. doi:10.1016/j.memsci.2009.04.011

Kumar, R., and Ismail, A. F., 2015. “Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge.” J. of Appl. Polym. Sci., 132(21), n/a–n/a. doi:10.1002/app.42042

Kim,D.I, Gwak, G., Zhan,M., and Hong, S., 2019. “Sustainable dewatering of grapefruit juice through forward osmosis: Improving membrane performance, fouling control, and product quality.” J. of Membr. Sci.,578, 53-60. doi:10.1016/j.memsci.2019.02031

Lee, W. J., Ng, Z. C., Hubadillah, S. K., Goh, P. S., Lau, W. J., Othman, M. H. D., Ismail, A.F., andHilal, N., 2020. “Fouling mitigation in forward osmosis and membrane distillation for desalination.” Desalination, 480, 114338. doi:10.1016/j.desal.2020.114338

Mulder, M., 1996. Basic Principles of Membrane Technology. Springer. doi:10.1007/978-94-009-1766-8

Malek, S. A. A, Abu Seman, M. N., Johnson, D., and Hilal, N., 2012. “Formation and characterization of polyethersulfone membranes using different concentrations of polyvinyl pyrrolidone.” Desalination, 288, 31–39.


Nguyen, T. P. N., Yun, E.-T., Kim, I.-C., and Kwon, Y.-N., 2013. “Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis.” J. of Membr. Sci., 433, 49–59. doi:10.1016/j.memsci.2013.01.027

Niu, F., Huang, M., Cai, T., and Meng, L., 2018. “Effect of membrane thickness on properties of FO membranes with nanofibrous substrate.” IOP Conf. Series: Earth and Environmental Science, 170(5), (052005). doi: 10.1088/1755-1315/170/5/052005

Rao, P. S., Wey, M.-Y., Tseng, H.-H., Kumar, I. A., and Weng, T.-H., 2008. “A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application.” Microporous and Mesoporous Mater., 113(1-3), 499–510. doi:10.1016/j.micromeso.2007.12.008

Rastogi, N. K., 2018. “Reverse osmosis and forward osmosis for the concentration of fruit juices.” Fruit Juices, 241–259. doi:10.1016/b978-0-12-802230-6.00013-8

Rastogi, N. K., 2020. “Applications of forward osmosis process in food processing and future implications.” Current Trends and Future Developments on (Bio-) Membr., 113–138. doi:10.1016/b978-0-12-816777-9.00005-8

Shang, M., and Shi, B., 2018. “Study on preparation and performances of cellulose acetate forward osmosis membrane.” Chem. Pap., 72(12), 3159–3167. doi:10.1007/s11696-018-0554-z

Vaulina, E., Widyaningsih, S., Kartika, D., and Romdoni, M. P., 2018. “The effect of cellulose acetate concentration from coconut nira on ultrafiltration membrane characters.” IOP Conference Series: Materials Science and Engineering, 349, 012020. doi:10.1088/1757-899x/349/1/012020

Wenten, I. G., Khoiruddin, K., Reynard, R., Lugito, G., and Julian, H., 2021. “Advancement of forward osmosis (FO) membrane for fruit juice concentration.” J. of Food Eng., 290, 110216. doi:10.1016/j.jfoodeng.2020.110216

Xu, W., Chen, Q., and Ge, Q., 2017. “Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes.” Desalination, 419, 101–116. doi:10.1016/j.desal.2017.06.007

Yadav, S., Ibrar, I., Bakly, S., Khanafer, D., Altaee ,A., Padmanaban, V.C., Samal, A.K, and Hawari, A.H., 2020. “Organic fouling in forward osmosis: A comprehensive review,” Water 12(5), 1505. doi:10.3390/w12051505

Zhang, P., Wang, Y., Xu, Z., and Yang, H., 2011. “Preparation of poly (vinyl butyral) hollow fiber ultrafiltration membrane via wet-spinning method using PVP as additive.” Desalination, 278(1-3), 186–193. doi:10.1016/j.desal.2011.05.026


Article Metrics

Abstract views : 271 | views : 246


  • There are currently no refbacks.

ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.