The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane

https://doi.org/10.22146/ajche.77318

Kindriari Nurma Wahyusi(1), Ika Nawang Puspitawati(2*), Abdul Rachman Wirayudha(3)

(1) Chemical Engineering Department, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur, Gunung Anyar, Surabaya, Indonesia
(2) Chemical Engineering Department, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur, Gunung Anyar, Surabaya, Indonesia
(3) Chemical Engineering Department, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur, Gunung Anyar, Surabaya, Indonesia
(*) Corresponding Author

Abstract


The electrolyte or ion conductor acts as a bridge to transfer the ions the electrodes generate. In general, electrolytes are in the form of liquids. However, liquid electrolytes have drawbacks, including needing to be more practical and leaking quickly. Therefore, people switch to solid matrix electrolytes as battery electrolytes. An ideal solid electrolyte membrane must have chemical stability, thermal stability, high ionic conductivity, high flexibility, low cost, and abundant material availability. Lithium extraction from used batteries using Deep Eutectic Solvent (DES) was found to be an intelligent solvent. Mixing the method with lithium salt on a chitosan membrane can increase conductivity. This study aims to determine the lowest resistance value and highest conductivity of solid polymer electrolytes using Li2CO3 from used batteries. After separating the Lithium-Cobalt component from the used battery, it was extracted with deep DES solvent and precipitated using Na2CO3 to produce the Li2CO3 compound. Polymer electrolyte was synthesized by mixing polyvinyl alcohol and adding 0.2 grams, 0.4 grams, 0.6 grams, 0.8 grams, and 1 gram of chitosan. Li2CO3 variables are 0.2 grams, 0.4 grams, 0.6 grams, 0.8 grams, and 1 gram. The results showed that the higher content of chitosan and Li2CO3 led to an increase in ionic conductivity. These results concluded that the best solid electrolyte membrane was obtained with a variation ratio of 0.2 grams of chitosan with the addition of 1 gram of Li2CO3.

Keywords


Chitosan; Conductivity; Deep Eutectic Solvent; Lithium-Ion; Solid Electrolyte Membrane

Full Text:

PDF


References

Abbott, A.P., Barron, J.C., Ryder, K.S., and Wilson, D., 2007. “Eutectic‐based ionic liquids with metal‐containing anions and cations.” Chem. Eur. J., 13, 6495–6501.

Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., and Tambyrajah, V., 2003. “Novel solvent properties of choline chloride/urea mixtures.” Chem. Commun., 1, 70–71.

Afif, M., Wijayati, N., and Mursiti, S., 2018. “Pembuatan dan karakterisasi bioplastik dari pati biji alpukat-kitosan dengan plasticizer sorbitol.” Indones. J. Chem. Sci., 7, 102–109.

Agustina, S., Swantara, I.M.D., and Suartha, I.N., 2015. “Isolasi kitin, karakterisasi, dan sintesis kitosan dari kulit udang.” J. Kim., 9, 271–278.

Albler, F.J., Bica, K., Foreman, M.R.S., Holgersson, S., and Tyumentsev, M.S., 2017. “A comparison of two methods of recovering cobalt from a deep eutectic solvent: Implications for battery recycling.” J. Clean. Prod., 167, 806–814.

Arora, P., and Zhang, Z., 2004. “Battery separators.” Chem. Rev. 104, 4419–4462.

Busche, M.R., Drossel, T., Leichtweiss, T., Weber, D.A., Falk, M., Schneider, M., and Janek, J., 2016. “Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts.” Nat. Chem., 8, 426–434.

Chang, Z., Qiao, Y., Deng, H., Yang, H., He, P., and Zhou, H., 2020. “A liquid electrolyte with de-solvated lithium ions for lithium-metal battery.” Joule, 4, 1776–1789.

Daniel, C., and Besenhard, J.O. (Eds. ., 2012. Handbook of battery materials. John Wiley & Sons, New York.

Dehghani-Sanij, A.R., Tharumalingam, E., Dusseault, M.B., and Fraser, R., 2019. “Study of energy storage systems and environmental challenges of batteries.” Renew. Sustain. Energy Rev., 104, 192–208.

Diouf, B., and Pode, R., 2015. “Potential of lithium-ion batteries in renewable energy.” Renew. Energy, 76, 375–380.

Gonggo, S.T., Diah, A.W.M., and Lanteene, R., 2017. “Pengaruh Kaolin Terhadap Membran Blend Kitosan Poli Vinil Alkohol-Litium Sebagai Membran Elektrolit Untuk Aplikasi Baterai Ion Litium.” J. Akad. Kim., 6, 55–64.

Halder, A.K., and Cordeiro, M.N.D., 2019. “Probing the environmental toxicity of deep eutectic solvents and their components: An in silico modeling approach.” ACS Sustain. Chem. Eng., 7, 10649–10660.

Hammond, O.S., Bowron, D.T., and Edler, K.J., 2016. “Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling.” Green Chem., 18, 2736–2744.

Hansen, B.B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J.M., and Sangoro, J.R., 2020. “Deep eutectic solvents: A review of fundamentals and applications.” Chem. Rev.,121, 1232–1285.

Hsb, F.Z., 2017. Pengaruh Penambahan Garam Litium Li2CO3 dalam Pembuatan Lembaran Komposit Katoda LiFePO4. Universitas Sumatera Utara.

Jiamiao, C., Jingwen, X., Shaomin, J., Yanping, H., Jingwei, Z., and Liang, L., 2020. “All solid polymer electrolytes for lithium batteries.” Prog. Chem., 32, 481.

Juneidi, I., Hayyan, M., and Mohd Ali, O., 2016. “Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish.” Environ. Sci. Pollut. Res., 23, 7648–7659.

Kasnatscheew, J., Wagner, R., Winter, M., and Cekic-Laskovic, I., 2018. “Interfaces and materials in lithium ion batteries: challenges for theoretical electrochemistry.” Top. Curr. Chem. (Z), 376, 1-26.

Khan, T.A., Peh, K.K., and Ch’ng, H.S., 2002. “Reporting degree of deacetylation values of chitosan: the influence of analytical methods.” J. Pharm. Pharm. Sci, 5, 205–212.

Khandelwal, S., Tailor, Y.K., and Kumar, M., 2016. “Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations.” J. Mol. Liq., 215, 345–386.

Kim, T., Song, W., Son, D.Y., Ono, L.K., and Qi, Y., 2019. “Lithium-ion batteries: outlook on present, future, and hybridized technologies.” J. Mater. Chem. A, 7, 2942–2964.

Li, M., Lu, J., Chen, Z., and Amine, K., 2018. “30 years of lithium‐ion batteries.” Adv. Mater., 30, 1800561.

Lou, S., Zhang, F., Fu, C., Chen, M., Ma, Y., Yin, G., and Wang, J., 2021. “Interface issues and challenges in all‐solid‐state batteries: lithium, sodium, and beyond.” Adv. Mater., 33, 2000721.

Manthiram, A., Yu, X., and Wang, S., 2017. “Lithium battery chemistries enabled by solid-state electrolytes.” Nat. Rev. Mater., 2, 1–16.

Meyer, W.H., 1998. “Polymer electrolytes for lithium‐ion batteries.” Adv. Mater., 10, 1–16.

Ngo, D.H., and Kim, S.K., 2014. “Antioxidant effects of chitin, chitosan, and their derivatives.” Adv. Food Nutr. Res., 73, 15–31.

NK, L.L., and Yulianti, E., 2015. “Optimalisasi konduktivitas ionik dan sifat mekanik bahan polimer elektrolit padat baterai berbasis kitosan dengan penambahan plasticizer (etilen glikol dan gliserol)(Optimization of ionic conductivity and mechanical properties of chitosan-based solid elec.” Pillar Phys., 5, 41–48.

Nofiandi, D., Rasyadi, Y., Zaunit, M.M., and Pratiwi, M., 2021. “Formulasi dan Karakterisasi Edible Film dari Poliblen Pati Umbi Talas Kimpul–Polivinil Alkohol dengan Polietilen Glikol sebagai Plasticizer.” J. Katalisator, 6, 88–98.

Pratiwi, D.E., 2018. “Sintesis membran elektrolit padat berbahan dasar kitosan.” Sainsmat J. Ilm. Ilmu Pengetah. Alam, 7, 86–91.

Marganof, Tarumingkeng, R.C., and Coto, Z., 2003. “Potensi Limbah Udang sebagai Penyerap Logam Berat (Timbal, Kadmium, dan Tembaga) di Perairan.” Institut Pertanian Bogor

Putro, A.Z., Windyanto, N.F., and Dyartanti, 2016. “Membran Polimer Elektrolit Nanokomposit Berbasis PVdF-HFP (Poly Vinylidene Flouride co-Hexaflouropropylene) sebagai Separator Baterai Lithium Ion dengan Variasi Non Solvent.” Semin. Nas. Tek. Kim. Kejuangan 2., UPN V Yogyakarta, Indonesia.

Quartarone, E., and Mustarelli, P., 2011. “Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives.” Chem. Soc. Rev., 40, 2525–2540.

Radošević, K., Bubalo, M.C., Srček, V.G., Grgas, D., Dragičević, T.L., and Redovniković, I.R., 2015. “Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents.” Ecotoxicol. Environ. Saf., 112, 46–53.

Sánchez-Machado, D.I., López-Cervantes, J., Correa-Murrieta, M.A., Sánchez-Duarte, R.G., Cruz-Flores, P., and de la Mora-López, G.S., 2019. “Chitosan.” Nonvitamin nonmineral Nutr. Suppl. Acad. Press, 485–493.

Santhosh, S., Sini, T.K., Anandan, R., and Mathew, P.T., 2006. “Effect of chitosan supplementation on antitubercular drugs-induced hepatotoxicity in rats.” Toxicology, 219, 53–59.

Sudaryanto, Y.E., Dimyati, A., and Jodi, H., 2012. “Pengembangan Elektrolit Padat Berbasis Kitosan untuk Baterai Kendaraan Listrik.” Pus. Teknol. Bahan Ind. Nukl., 1–10.

Supeni, G., Cahyaningtyas, A.A., and Fitrina, A., 2015. “Karakterisasi sifat fisik dan mekanik penambahan kitosan pada edible film karagenan dan tapioka termodifikasi.” J. Kim. dan Kemasan, 37, 103–110.

Suyati, L., Nuryanto, R., and Anggrayni, R., 2010. “Pembuatan dan Karakterisasi Elektrolit Padat NaMn2-xMgxO4:(I).” J. Kim. Sains dan Apl., 13, 1–3.

Tran, M.K., Rodrigues, M.T.F., Kato, K., Babu, G., and Ajayan, P.M., 2019. “Deep eutectic solvents for cathode recycling of Li-ion batteries.” Nat. Energy, 4, 339–345.

Wang, Y., and Zhong, W.H., 2015. “Development of electrolytes towards achieving safe and high‐performance energy‐storage devices: a review.” ChemElectroChem, 2, 22–36.

Xu, K., 2004. “Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.” Chem. Rev., 104, 4303–4418.

Xu, P., Zheng, G.W., Zong, M. H., Li, N., and Lou, W.Y., 2017. “Recent progress on deep eutectic solvents in biocatalysis.” Bioresour. Bioprocess., 4, 1–18.

Yang, C., Fu, K., Zhang, Y., Hitz, E., and Hu, L., 2017. “Protected lithium‐metal anodes in batteries: from liquid to solid.” Mater. Adv., 29, 1701169.

Yulianti, E., Karo, A.K., and Susita, L., 2013a. “Synthesis of electrolyte polymer based on natural polymer chitosan by ion implantation technique.” Procedia Chem., 4, 202–207.

Yulianti, E., Saputri, R.D., Sudaryanto, S., Jodi, H., and Salam, R., 2013b. “Pembuatan Bahan Polimer Elektrolit Padat Berbasis Nanokomposit Kitosan Montmorillonite untuk Aplikasi Baterai.” J. Kim. dan Kemasan, 35, 77–83.

Zhao, L., Li, Y., Zhang, H., Wu, W., Liu, J., and Wang, J., 2015. “Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide.” J. Power Sources, 286, 445–457.

Zulfikar, M., Wahyuningrum, D., and Berghuis, D.N.T., 2009. “Pengaruh konsentrasi kitosan terhadap sifat membran komposit kitosan-silika untuk sel bahan bakar.” Pros. Semin. Kim. Bersama UKM-ITB VIII 9. Bandung, Indonesia.



DOI: https://doi.org/10.22146/ajche.77318

Article Metrics

Abstract views : 998 | views : 803

Refbacks

  • There are currently no refbacks.


ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.