Photo-Oxidative Degradation and Hydrolytic Degradation of Micro-Graphite Filled Poly(lactic acid) Composites

Mujtahid Kaavessina(1*), Esa Nur Shohih(2), Sperisa Distantina(3), Fadilah Fadilah(4)

(1) Chemical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, 57128, Indonesia
(2) Chemical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, 57128, Indonesia
(3) Chemical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, 57128, Indonesia
(4) Chemical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, 57128, Indonesia
(*) Corresponding Author


In a specific range of electrical conductivity, poly(lactic acid)/PLA has the potential to be developed into environmentally friendly antistatic packaging after a modification process. PLA was blended in a mini single screw extruder at 180oC with different compositions of micro-graphite (0, 0.5, 1, and 1.5 %wt.). This report discusses the degradability of PLA composite, i.e., photo-oxidative degradation and hydrolytic degradation. The weight loss, thermal properties, and cross-section morphology of the tested specimens were monitored periodically. During the degradation test, micro-graphite could be released from the composite, leaving a rough surface and reducing the weight of the composite. Differential scanning calorimetry (DSC) test exhibited that the presence of micro-graphite did not influence the melting temperature of the composition studied. However, the onset temperature of the melting point showed a slight shift of about 2-4oC. Bulk crystallinity demonstrated a considerable dependence on the micro-graphite loading (0-1.5%wt). However, there were two contradictory phenomena after both degradation tests. UV exposure could stimulate the fragmentation of PLA chains, break the crystal structure and increase the embrittlement. Thus, crystallinity tended to decrease during photo-oxidative degradation. In hydrolytic degradation, degradation firstly occurred in the amorphous regions and was ongoing within the studied range of time (0-20 weeks). Thus, the bulk crystallinity of composite tended to increase.


Photo-oxidative Degradation, Hydrolytic Degradation, Poly(Lactic Acid), Micro-Graphite, Composite

Full Text:



Araújo, A., Botelho, G. L., Silva, M., & Machado, A. V. (2013). UV stability of poly (lactic acid) nanocomposites. Journal of Materials Science and Engineering. B, 3(2B), 75

Balani, K., Verma, V., Agarwal, A., & Narayan, R. (2014). Physical, Thermal, and Mechanical Properties of Polymers Biosurfaces:: A Materials Science and Engineering Perspective (pp. 329-344): John Wiley & Sons, Inc.

Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N. D., . . . Bikiaris, D. N. (2021). Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers, 13(11), 1822

Braga, N. F., Ding, H., Sun, L., & Passador, F. R. (2021). Antistatic packaging based on PTT/PTT-g-MA/ABS/MWCNT nanocomposites: Effect of the chemical functionalization of MWCNTs. Journal of Applied Polymer Science, 138(11), 50005

Casalini, T., Rossi, F., Castrovinci, A., & Perale, G. (2019). A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 7(259)

Cho, M., Song, I., Pavlidis, S., Fleetwood, Z. E., Buchner, S. P., McMorrow, D., . . . Cressler, J. D. (2018). An Electrostatic Discharge Protection Circuit Technique for the Mitigation of Single-Event Transients in SiGe BiCMOS Technology. IEEE Transactions on Nuclear Science, 65(1), 426-431

Codari, F., Lazzari, S., Soos, M., Storti, G., Morbidelli, M., & Moscatelli, D. (2012). Kinetics of the hydrolytic degradation of poly(lactic acid). Polymer Degradation and Stability, 97(11), 2460-2466

Copinet, A., Bertrand, C., Longieras, A., Coma, V., & Couturier, Y. (2003). Photodegradation and Biodegradation Study of a Starch and Poly(Lactic Acid) Coextruded Material. Journal of Polymers and the Environment, 11(4), 169-179

de Souza Vieira, L., dos Anjos, E. G. R., Verginio, G. E. A., Oyama, I. C., Braga, N. F., da Silva, T. F., . . . Passador, F. R. (2021). Carbon-based materials as antistatic agents for the production of antistatic packaging: a review. Journal of Materials Science: Materials in Electronics, 32(4), 3929-3947

Elsawy, M., Kim, K.-H., Park, J.-W., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346-1352

Feldman, D. (2002). Polymer Weathering: Photo-Oxidation. Journal of Polymers and the Environment, 10(4), 163-173

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782

González-López, M. E., del Campo, A. S. M., Robledo-Ortíz, J. R., Arellano, M., & Pérez-Fonseca, A. A. (2020). Accelerated weathering of poly (lactic acid) and its biocomposites: A review. Polymer Degradation and Stability, 109290

Gorrasi, G., & Pantani, R. (2018). Hydrolysis and Biodegradation of Poly(lactic acid). In M. L. Di Lorenzo & R. Androsch (Eds.), Synthesis, Structure and Properties of Poly(lactic acid) (pp. 119-151). Cham: Springer International Publishing.

Jin, F.-L., Hu, R.-R., & Park, S.-J. (2019). Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review. Composites Part B: Engineering, 164, 287-296

Kaavessina, M., Chafidz, A., Ali, I., & Al-Zahrani, S. M. (2015). Characterization of poly(lactic acid)/hydroxyapatite prepared by a solvent-blending technique: Viscoelasticity and in vitro hydrolytic degradation. Journal of Elastomers & Plastics, 47(8), 753-768

Kaavessina, M., Distantina, S., Shohih, E. N., Lomi, H. A. S., Pratiwi, B. P., & Chafid, A. (2020). Viscoelastic Behavior and Thermal Stability of Poly(Lactic Acid) Bio-Composite Filled with Micro-Graphite. Macromolecular Symposia, 391(1), 1900140

Koffi, A., Mijiyawa, F., Koffi, D., Erchiqui, F., & Toubal, L. (2021). Mechanical Properties, Wettability and Thermal Degradation of HDPE/Birch Fiber Composite. Polymers, 13(9), 1459

Li, M.-X., Kim, S.-H., Choi, S.-W., Goda, K., & Lee, W.-I. (2016). Effect of reinforcing particles on hydrolytic degradation behavior of poly (lactic acid) composites. Composites Part B: Engineering, 96, 248-254

Lin, W.-Y., Shih, Y.-F., Lin, C.-H., Lee, C.-C., & Yu, Y.-H. (2013). The preparation of multi-walled carbon nanotube/poly (lactic acid) composites with excellent conductivity. Journal of the Taiwan Institute of Chemical Engineers, 44(3), 489-496

Litauszki, K., Kovacs, Z., Mészáros, L., & Kmetty, Á. (2019). Accelerated photodegradation of poly (lactic acid) with weathering test chamber and laser exposure–A comparative study. Polymer Testing, 76, 411-419

Mai, F., Habibi, Y., Raquez, J.-M., Dubois, P., Feller, J.-F., Peijs, T., & Bilotti, E. (2013). Poly (lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer, 54(25), 6818-6823

Mucha, M., Bialas, S., & Kaczmarek, H. (2014). Effect of nanosilver on the photodegradation of poly (lactic acid). Journal of Applied Polymer Science, 131(8)

Naser, A. Z., Deiab, I., Defersha, F., & Yang, S. (2021). Expanding Poly(lactic acid) (PLA) and Polyhydroxyalkanoates (PHAs) Applications: A Review on Modifications and Effects. Polymers, 13(23), 4271

Reichert, C. L., Bugnicourt, E., Coltelli, M.-B., Cinelli, P., Lazzeri, A., Canesi, I., . . . Schmid, M. (2020). Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers, 12(7), 1558

Rosli, N. A., Karamanlioglu, M., Kargarzadeh, H., & Ahmad, I. (2021). Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review. International Journal of Biological Macromolecules, 187, 732-741

Shohih, E. N., Kaavessina, M., & Distantina, S. (2020). Preparation and characterization of micro-graphite filled poly(lactic acid) composites: Part 2 - Crystallinity and electrical properties. AIP Conference Proceedings, 2296(1), 020062

Shohih, E. N., Kaavessina, M., Lomi, H. A. S., Pratiwi, B. P., Distantina, S., & Chafidz, A. (2020). Preparation and Characterization of Micro-Graphite Filled Poly(Lactic Acid) Composites: Part 1 - Rheological and Thermal Properties. Materials Science Forum, 981, 138-143

Silva, T. F. d., Menezes, F., Montagna, L. S., Lemes, A. P., & Passador, F. R. (2019). Preparation and characterization of antistatic packaging for electronic components based on poly(lactic acid)/carbon black composites. Journal of Applied Polymer Science, 136(13), 47273

Sullivan, E. M., Oh, Y. J., Gerhardt, R. A., Wang, B., & Kalaitzidou, K. (2014). Understanding the effect of polymer crystallinity on the electrical conductivity of exfoliated graphite nanoplatelet/polylactic acid composite films. Journal of Polymer Research, 21(10), 563

Tsuji, H., Shimizu, K., & Sato, Y. (2012). Hydrolytic degradation of poly(L-lactic acid): Combined effects of UV treatment and crystallization. Journal of Applied Polymer Science, 125(3), 2394-2406

Vohlídal, J. (2021). Polymer degradation: a short review. Chemistry Teacher International, 3(2), 213-220

Zaaba, N. F., & Jaafar, M. (2020). A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering & Science, 60(9), 2061-2075

Zare, Y., & Rhee, K. Y. (2019). Following the morphological and thermal properties of PLA/PEO blends containing carbon nanotubes (CNTs) during hydrolytic degradation. Composites Part B: Engineering, 175, 107132

%;font-family:"Segoe UI",sans-serif;mso-fareast-font-family:"MS Mincho";




Article Metrics

Abstract views : 574 | views : 201


  • There are currently no refbacks.

ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.