Performance of Chlorella sp. and Multicultural Bacteria in Removing Pollutants from Nutrient-Rich Wastewater

https://doi.org/10.22146/ajche.69427

Mohd Edyazuan Azni(1), Atiqah Zainal Abidin(2), Roslan Noorain(3), Sharifah Mariam Syed Hitam(4), Lusi Ernawati(5), Rosnah Abdullah(6), Ahmad Shoiful(7), Rozyanti Binti Mohamad(8*)

(1) Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology (UniKL MICET), Kawasan Perindustrian Bandar Vendor, Taboh Naning, Alor Gajah, Melaka, 78000, Malaysia
(2) Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology (UniKL MICET), Kawasan Perindustrian Bandar Vendor, Taboh Naning, Alor Gajah, Melaka, 78000, Malaysia
(3) Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology (UniKL MICET), Kawasan Perindustrian Bandar Vendor, Taboh Naning, Alor Gajah, Melaka, 78000, Malaysia
(4) Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology (UniKL MICET), Kawasan Perindustrian Bandar Vendor, Taboh Naning, Alor Gajah, Melaka, 78000, Malaysia
(5) Department of Chemical Engineering, Institut Teknologi Kalimantan, Balikpapan, East Kalimantan, 76127, Indonesia
(6) Centre of Advanced Material and Energy Sciences, University of Brunei Darussalam, Gadong BE 1410, Brunei Darussalam
(7) Center of Technology for the Environment, Agency for the Assessment and Application of Technology (BPPT), Kawasan PUSPIPTEK, Serpong, Tangerang Selatan, 15314, Indonesia
(8) Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology (UniKL MICET), Kawasan Perindustrian Bandar Vendor, Taboh Naning, Alor Gajah, Melaka, 78000, Malaysia.
(*) Corresponding Author

Abstract


The most common method of treating palm oil mill effluent (POME) is by using various types of bacteria communities. However, the utilization of microalgae in consuming the high nutrient content in wastewater offer additional benefit, particularly for CO2 sequestration. In this study, we proposed to evaluate the performance of multicultural bacteria obtained from municipal wastewater and Chlorella sp. for batch treatment of POME at different COD concentrations (ranges between 600 to 1,300 mg/L), microalgae species (C. vulgaris and C. pyrenoidosa) and speed of agitation (0 and 150 rpm). The results showed that between the bacteria and microalgae that are involved in POME treatment, microalgae give high removal of colour (93%) and ammoniacal nitrogen (95%). As for the COD and phosphate removal, both microorganisms show comparable performances. It was observed that C. pyrenoidosa was able to remove more colour compared to C. vulgaris where higher lipid yield production was obtained (47.6%). However, there is no significant impact of agitation on pollutant removal. This study also reveals that co-cultivation of different microalgae species does not affect the efficiency of the system. This study provides an important insight into developing an efficient and environmentally friendly method to treat wastewater by incorporating green technology in the treatment system


Keywords


POME; Chlorella sp.; Multicultural Bacteria; Pollutants Removal; Lipid Production

Full Text:

PDF


References

Abdurahman, N. H., Rosli, Y. M., & Azhari, N. H., 2013. The performance evaluation of anaerobic methods for palm oil mill effluent (pome) treatment: A review. International Perspectives on Water Quality Management and Pollutant Control, InTechOpen, London, United Kingdom.

Ahmad, A. L., Chan, C. Y., Abd Shukor, S. R., & Mashitah, M. D., 2008. "Recovery of oil and carotenes from palm oil mill effluent (POME)", Chem. Eng. J., 141(1–3), 383–386.

Al-Amshawee, S. K., Yunus, M. Y., & Azoddein, A. A., 2020. "A review study of biofilm bacteria and microalgae bioremediation for palm oil mill effluent: Possible approach." IOP Conf. Ser.: Mater. Sci. Eng., 736(2).

Altogbia, W. M., Yusof, N. A., Zainal, Z., Idris, A., Rahman, S. K. A., Rahman, S. F. A., & Isha, A., 2021. "Molecular imprinted polymer for β-carotene for application in palm oil mill effluent treatment", Arab. J. Chem., 14(2), 102928.

American Public Health Association (APHA), 2002. Standard methods for the examination of water and wastewater: 20th edition. Washington DC, USA.

Azimatun Nur, M. M., Setyoningrum, T. M., & Budiaman, I. G. S., 2017. "Potency of Botryococcus braunii cultivated on palm oil mill effluent wastewater as a source of biofuel. Environ. Eng. Res., 22(4), 417–425.

Azni, M. E., Norhan, A. S., Hans, L., & Roslan, S. N., 2015. "Feasibility study on empty fruit bunch ( EFB ) cement board". 5th International Conference on Environment and Natural Science, Paris, France.

Bala, J. D., Lalung, J., & Ismail, N., 2015. "Studies on the reduction of organic load from palm oil mill effluent (POME) by bacterial strains," Intr. J. Recycl. Org. Waste Agric., 4(1), 1–10.

Bello, M. M., Nourouzi, M. M., Abdullah, L. C., Choong, T. S. Y., Koay, Y. S., & Keshani, S., 2013. "POME is treated for removal of color from biologically treated POME in fixed bed column: Applying wavelet neural network (WNN)", J. Hazard. Mater., 262, 106–113.

Bhuyar, P., Farez, F., Ab. Rahim, M. H., Maniam, G. P., & Govindan, N., 2021. "Removal of nitrogen and phosphorus from agro-industrial wastewater by using microalgae collected from coastal region of peninsular Malaysia", Afr. J. Biol. Sci., 3(1), 58–66.

Bligh, E.G. and Dyer, W. J., 1959. "A rapid method of total lipid extraction and purification", Can. J. Biochem. Physiol., 37(8).

Chen, J., Liu, Y., Gitau, M. W., Engel, B. A., Flanagan, D. C., & Harbor, J. M., 2019. "Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community", Sci. Total Environ., 665, 69–79.

Chu, W. L., See, Y. C., & Phang, S. M., 2009. "Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes", J. App. Phycol., 21(6), 641–648.

Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M., 2009. "Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production", Chem. Eng. Process.: Process Intensif., 48(6), 1146–1151. 03.006

Daneshvar, E., Vazirzadeh, A., Niazi, A., Kousha, M., Naushad, M., & Bhatnagar, A., 2017. "Desorption of methylene blue dye from brown macroalga: Effects of operating parameters, isotherm study and kinetic modeling", J. Clean. Prod., 152, 443–453.

Din, M. F. M., Ujang, Z., Yunus, S. M., & Van Loosdrecht, M. C. M., 2006. "Storage of Polyhydroxyalkanoates (PHA) in fed batch mixed cultures using Palm Oil Mill Effluent (POME)". 4th Seminar On Water And Waste Management And Technologies, Granada, Spain.

Huang, G. H., Chen, F., Wei, D., Zhang, X. W., & Chen, G., 2010. "Biodiesel production by microalgal biotechnology", Appl. Energy, 87(1), 38–46.

Hussain, F., Shah, S. Z., Ahmad, H., Abubshait, S. A., Abubshait, H. A., Laref, A., Manikandan, A., Kusuma, H. S., & Iqbal, M., 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review", Renew. Sust. Energ. Rev., 137, 110603.

Hwangbo, M., & Chu, K. H., 2020. "Recent advances in production and extraction of bacterial lipids for biofuel production", Sci. Total Environ., 734, 139420.

Iloms, E., Ololade, O. O., Ogola, H. J. O., & Selvarajan, R., 2020. "Investigating industrial effluent impact on municipal wastewater treatment plant in vaal, South Africa", Int. J. Environ. Res. Public Health, 17(3), 1–18.

Irfan, M., Butt, T., Imtiaz, N., Abbas, N., Khan, R. A., & Shafique, A., 2017. The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate", Arab. J. Chem., 10, S2307–S2318.

Joint, I., Henriksen, P., Fonnes, G. A., Bourne, D., Thingstad, T. F., & Riemann, B., 2002. "Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms", Aquat. Microb. Ecol., 29(2), 145–159.

Kamyab, H., Din, M. F. M., Keyvanfar, A., Majid, M. Z. A., Talaiekhozani, A., Shafaghat, A., Lee, C. T., Shiun, L. J., & Ismail, H. H., 2015. "Efficiency of Microalgae Chlamydomonas on the Removal of Pollutants from Palm Oil Mill Effluent (POME)", Energy Procedia, 75, 2400–2408.

Karim, A., Islam, M. A., Khalid, Z. Bin, Yousuf, A., Khan, M. M. R., & Mohammad Faizal, C. K., 2021. "Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture", Renew. Energy, 176, 106–114.

Khadaroo, S. N. B. A., Poh, P. E., Gouwanda, D., & Grassia, P., 2019. "Applicability of various pretreatment techniques to enhance the anaerobic digestion of Palm oil Mill effluent (POME): A review", J. Environ. Chem. Eng., 7(5), 103310.

Lee, J., Lee, J., Shukla, S. K., Park, J., & Lee, T. K., 2016. "Effect of algal inoculation on COD and nitrogen removal, and indigenous bacterial dynamics in municipal wastewater", J. Microbiol. Biotechnol., 26(5), 900–908.

Lin, S. S., Shen, S. L., Zhou, A., & Lyu, H. M., 2021. "Assessment and management of lake eutrophication: A case study in Lake Erhai, China", Sci. Total Environ., 751, 141618.

Mao, Y., Xiong, R., Gao, X., Jiang, L., Peng, Y., & Xue, Y., 2021. "Analysis of the status and improvement of microalgal phosphorus removal from municipal wastewater", Process., 9(9), 1486.

Maxwell, D. P., Falk, S., Trick, C. G., & Huner, N. P. A., 1994. "Growth at low temperature mimics high-light acclimation in Chlorella vulgaris", Plant Physiol., 105(2), 535–543.

Mohd-Nor, D., Ramli, N., Sharuddin, S. S., Hassan, M. A., Mustapha, N. A., Ariffin, H., Sakai, K., Tashiro, Y., Shirai, Y., & Maeda, T., 2019. "Dynamics of microbial populations responsible for biodegradation during the full-scale treatment of palm oil mill effluent", Microbes Environ., 34(2), 121–128.

Mujtaba, G., & Lee, K., 2016. "Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria", Appl. Chem. Eng., 27(1), 1–9.

Mujtaba, G., Rizwan, M., & Lee, K., 2015. "Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida", Biotechnol. Bioprocess Eng., 20(6), 1114–1122.

Mujtaba, G., Rizwan, M., & Lee, K., 2017. "Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris", J. Ind. Eng. Chem., 49, 145–151.

Najafpour, G. D., Zinatizadeh, A. A. L., Mohamed, A. R., Hasnain Isa, M., & Nasrollahzadeh, H., 2006. "High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor", Process Biochem., 41(2), 370–379.

Negi, S., Barry, A. N., Friedland, N., Sudasinghe, N., Subramanian, S., Pieris, S., Holguin, F. O., Dungan, B., Schaub, T., & Sayre, R., 2015. "Impact of nitrogen limitation on biomass , photosynthesis , and lipid accumulation in Chlorella sorokiniana", J. Appl. Phycol., 28, 803-812.

Ng, M. H., & Choo, Y. M., 2016. "Improved method for the qualitative analyses of palm oil carotenes using UPLC", J. Chromatogr. Sci., 54(4), 633–638.

Nur, M. M.Azimatun, Garcia, G. M., Boelen, P., & Buma, A. G. J., 2021. "Influence of photodegradation on the removal of color and phenolic compounds from palm oil mill effluent by Arthrospira platensis", J. Appl. Phycol., 33(2), 901–915.

Nur, Muhamad Maulana Azimatun, & Buma, A. G. J., 2019. "Opportunities and challenges of microalgal cultivation on wastewater, with special focus on palm oil mill effluent and the production of high value compounds", Waste Biomass Valorization, 10(8), 2079–2097.

Nwuche, C. O., Aoyagi, H., & Ogbonna, J. C., 2014. "Treatment of palm oil mill effluent by a microbial consortium developed from compost soils", Int. Sch. Res. Notices, 2014, 1–8.

Putri, E. V., Din, M. F. M., Ahmed, Z., Jamaluddin, H., & Chelliapan, S., 2011. "Investigation of microalgae for high lipid content using palm oil mill effluent (Pome) as carbon source." International Conference on Environment and Industrial Innovation (IPCBEE), Singapore.

Rachmadona, N., Amoah, J., Quayson, E., Hama, S., Yoshida, A., Kondo, A., & Ogino, C., 2020. "Lipase-catalyzed ethanolysis for biodiesel production of untreated palm oil mill effluent", Sustain. Energ. Fuels, 4(3), 1105–1111.

Renaud, S. M., Thinh, L. Van, Lambrinidis, G., & Parry, D. L., 2002. "Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures", Aquac., 211(1–4), 195–214.

Samsudin, A., Azmi, A. S., Nawi, M. N. M., & Halim, A. A., 2018. "Wastewater treatment by microalgae-bacteria co-culture system", Malays. J. Microbiol., 14(3), 131–136.

Shen, X., Chu, F., Lam, P. K. S., & Zeng, R. J., 2015. "Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation", Water Res., 81, 294–300.

Shen, Y., Gao, J., & Li, L., 2017. "Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal", Bioresour. Technol., 243, 905–913.

Syafiqah Hazman, N. A., Mohd Yasin, N. H., Takriff, M. S., Hasan, H. A., Kamarudin, K. F., & Mohd Hakimi, N. I. N., 2018. "Integrated palm oil mill effluent treatment and CO2 sequestration by microalgae. Sains Malays., 47(7), 1455–1464.

Tan, K. A., Morad, N., Norli, I., Lalung, J., & Omar, W. M. W., 2018. "Post-treatment of palm oil mill effluent (POME) using freshwater green microalgae", Malays. J. Microbiol., 14(3), 145–151.

Taufikurahman, T., & Shafira, H., 2019. "Comparison between Chlorella vulgaris and Chlorella pyrenoidosa in biomass and protein content , cultivated in bioslurry and grown under various LED comparison between Chlorella vulgaris and Chlorella pyrenoidosa in biomass and protein content , cultivate." Joint Symposium on Plant Scienes and Products, Bandung, Indonesia.

Toh, P. Y., Tai, W. Y., Ahmad, A. L., Lim, J. K., & Chan, D. J. C., 2016. "Toxicity of bare and surfaced functionalized iron oxide nanoparticles towards microalgae", Int. J. Phytoremediation, 18(6), 643–650.

Tuser, C. (2020, January). What is Wastewater? Water & Waste Digest.

Wang, Y., He, B., Sun, Z., & Chen, Y. F., 2016. "Chemically enhanced lipid production from microalgae under low sub-optimal temperature", Algal Res., 16, 20–27.

Wu, T. Y., Mohammad, A. W., Jahim, J. M., & Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes", J. Environ. Manage. 91(7), 1467–1490.

Yoo, C., Jun, S. Y., Lee, J. Y., Ahn, C. Y., & Oh, H. M., 2010. "Selection of microalgae for lipid production under high levels carbon dioxide", Bioresour. Technol., 101(1 SUPPL.), S71–S74.

Yu, H., Kim, J., & Lee, C., 2019. "Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species", Sci. Rep., 9(1), 1–13.

Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J., & Yuan, Z., 2014. "Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis", Bioresour. Technol., 152, 292–298.




DOI: https://doi.org/10.22146/ajche.69427

Article Metrics

Abstract views : 2775 | views : 1636

Refbacks

  • There are currently no refbacks.


ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.