Submerged Membrane Photo Reactor (SMPR) with Simultaneous Photo Degradation and TiO2 Catalyst Recovery for Efficient Dyes Removal

https://doi.org/10.22146/ajche.65952

Dessy Ariyanti(1*), Filicia Wicaksana(2), Wei Gao(3)

(1) Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
(2) Department of Chemical & Materials Engineering, The University of Auckland, Auckland 1142, New Zealand
(3) Department of Chemical & Materials Engineering, The University of Auckland, Auckland 1142, New Zealand
(*) Corresponding Author

Abstract


In this study, a polyvinylidene difluoride (PVDF) hollow fiber membrane module incorporated with TiO2 was submerged into a photocatalytic reactor to create a hybrid photocatalysis with membrane separation process (a submerged membrane photoreactor, SMPR), for advanced dyes wastewater treatment. The SMPR performance was assessed by the degradation of single component Rhodamine B (RhB) and degradation of mixed dyes (RhB and Methyl orange (MO)) in a binary solution. Several operational parameters such as the amount of catalyst loading, permeate flux, and the effect of aeration were studied. Fouling tendency on the membrane was also investigated to determine the optimum operating conditions. The results show that the synergetic effect of the low catalyst loading and permeate flux creates the environment for optimum light penetration for high photocatalytic activity as the hybrid system with low catalyst loading (0.5 g/L) and 66 L/m2h of flux with aeration at 1.3 L/min has proven to increase the photocatalysis performance by 20% with additional catalyst recovery. In addition, applying the low catalyst loading and flux permeate with aeration brings minimal fouling problems.


Keywords


Dye degradation; Submerged membrane; Photocatalytic reactor; TiO2recovery

Full Text:

PDF


References

  1. Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., & Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Advances, 4(70), 37003-37026. doi:10.1039/C4RA06658H
  2. Ariyanti, D., Maillot, M., & Gao, W. (2018). Photo-assisted degradation of dyes in a binary system using TiO2 under simulated solar radiation doi://doi.org/10.1016/j.jece.2017.12.031
  3. Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997-3027. doi:10.1016/j.watres.2010.02.039
  4. Deutch, J. M., & Felderhof, B. U. (1973). Hydrodynamic effect in diffusion‐controlled reaction. The Journal of Chemical Physics, 59(4), 1669-1671. doi:10.1063/1.1680247
  5. Du, X., Qu, F., Liang, H., Li, K., Bai, L., & Li, G. (2017). Control of submerged hollow fiber membrane fouling caused by fine particles in photocatalytic membrane reactors using bubbly flow: Shear stress and particle forces analysis doi://doi.org/10.1016/j.seppur.2016.08.011
  6. Erdim, E., Soyer, E., Tasiyici, S., & Koyuncu, I. (2009). Hybrid photocatalysis/submerged microfi ltration membrane system for drinking water treatment. Desalination and Water Treatment, 9(1-3), 165-174. doi:10.5004/dwt.2009.767
  7. Horikoshi, S., Saitou, A., Hidaka, H., & Serpone, N. (2003). Environmental remediation by an integrated microwave/UV illumination method. V. thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/vis radiation. Environmental Science & Technology, 37(24), 5813-5822. doi:10.1021/es030326i
  8. Jiang, L., Zhang, X., & Choo, K. (2017). Submerged microfiltration-catalysis hybrid reactor treatment: Photocatalytic inactivation of bacteria in secondary wastewater effluent doi://doi.org/10.1016/j.seppur.2017.01.018
  9. Kertèsz, S., Cakl, J., & Jiránková, H. (2014). Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination, 343, 106-112. doi:10.1016/j.desal.2013.11.013
  10. Li, M., Lin, H., & Huang, C. (2009). Nanotechnostructured catalysts TiO2 nanoparticles for water purification. (pp. 43-92) American Society of Civil Engineers. doi:10.1061/9780784410301.ch03 Retrieved from http://dx.doi.org/10.1061/9780784410301.ch03
  11. López Fernández, R., Coleman, H. M., & Le-Clech, P. (2014). Impact of operating conditions on the removal of endocrine disrupting chemicals by membrane photocatalytic reactor. Environmental Technology (United Kingdom), 35(16), 2068-2074. doi:10.1080/09593330.2014.892539
  12. Luan, J., & Xu, Y. (2013). Photophysical property and photocatalytic activity of new Gd2InSbO7 and Gd2FeSbO7 compounds under visible light irradiation doi:10.3390/ijms14010999
  13. Meng, Y., Huang, X., Yang, Q., Qian, Y., Kubota, N., & Fukunaga, S. (2005). Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane. Desalination, 181(1), 121-133. doi:10.1016/j.desal.2005.02.015
  14. Molinari, R., Argurio, P., & Palmisano, L. (2015). 7 - photocatalytic membrane reactors for water treatment. In A. Basile, & A. C. K. Rastogi (Eds.), Advances in membrane technologies for water treatment (pp. 205-238). Oxford: Woodhead Publishing. doi://dx.doi.org.ezproxy.auckland.ac.nz/10.1016/B978-1-78242-121-4.00007-1 Retrieved from http://www.sciencedirect.com.ezproxy.auckland.ac.nz/science/article/pii/B9781782421214000071
  15. Molinari, R., Lavorato, C., & Argurio, P. (2017). Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catalysis Today, 281, Part 1, 144-164. doi://dx.doi.org/10.1016/j.cattod.2016.06.047
  16. Mozia, S. (2010). Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and Purification Technology, 73(2), 71-91. doi://dx.doi.org/10.1016/j.seppur.2010.03.021
  17. Nguyen, V., Tran, Q. B., Nguyen, X. C., Hai, L. T., Ho, T. T. T., Shokouhimehr, M., . . . Van Le, Q. (2020). Submerged photocatalytic membrane reactor with suspended and immobilized N-doped TiO2 under visible irradiation for diclofenac removal from wastewater. Process Safety and Environmental Protection, 142, 229-237. doi:https://doi.org/10.1016/j.psep.2020.05.041
  18. Ong, C. S., Lau, W. J., Goh, P. S., Ng, B. C., & Ismail, A. F. (2014). Investigation of submerged membrane photocatalytic reactor (sMPR) operating parameters during oily wastewater treatment process. Desalination, 353, 48-56. doi:10.1016/j.desal.2014.09.008
  19. Oppenheimer, N., & Stone, H. A. (2017). Effect of hydrodynamic interactions on reaction rates in membranes. Biophysical Journal, 113(2), 440-447. doi:10.1016/j.bpj.2017.06.013
  20. Sarasidis, V. C., Plakas, K. V., Patsios, S. I., & Karabelas, A. J. (2014). Investigation of diclofenac degradation in a continuous photocatalytic membrane reactor. influence of operating parameters. Chemical Engineering Journal, 239, 299-311. doi:10.1016/j.cej.2013.11.026
  21. Saravanan, R., Gracia, F., & Stephen, A. (2017). Basic principles, mechanism, and challenges of photocatalysis. In M. M. Khan, D. Pradhan & Y. Sohn (Eds.), Nanocomposites for visible light-induced photocatalysis (pp. 19-40). Cham: Springer International Publishing. doi:10.1007/978-3-319-62446-4_2 Retrieved from https://doi.org/10.1007/978-3-319-62446-4_2
  22. Sillanpää, M., Ncibi, M. C., & Matilainen, A. (2018). Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. Journal of Environmental Management, 208, 56-76. doi://doi.org/10.1016/j.jenvman.2017.12.009
  23. Stuart, B. H. (2004). Infrared spectroscopy : Fundamentals and applications. Hoboken: John Wiley & Sons, Incorporated. Retrieved from http://ebookcentral.proquest.com/lib/auckland/detail.action?docID=194354
  24. Vatanpour, V., Darrudi, N., & Sheydaei, M. (2020). A comprehensive investigation of effective parameters in continuous submerged photocatalytic membrane reactors by RSM. Chemical Engineering and Processing - Process Intensification, 157, 108144. doi:https://doi.org/10.1016/j.cep.2020.108144
  25. Vatanpour, V., Karami, A., & Sheydaei, M. (2017). Central composite design optimization of rhodamine B degradation using TiO2 nanoparticles/UV/PVDF process in continuous submerged membrane photoreactor doi://doi.org/10.1016/j.cep.2017.02.015
  26. Yan, S. C., Li, Z. S., & Zou, Z. G. (2010). Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir, 26(6), 3894-3901. doi:10.1021/la904023j
  27. Yoon, S. H. (2015). Membrane bioreactor processes: Principles and applications CRC Press. Retrieved from https://www.crcpress.com/Membrane-Bioreactor-Processes-Principles-and-Applications/Yoon/p/book/9781482255836
  28. Zangeneh, H., Zinatizadeh, A. A. L., Habibi, M., Akia, M., & Hasnain Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26, 1-36. doi:10.1016/j.jiec.2014.10.043
  29. Zhang, W., Ding, L., Luo, J., Jaffrin, M. Y., & Tang, B. (2016). Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review doi://doi.org/10.1016/j.cej.2016.05.071
  30. Zheng, X., Wang, Q., Chen, L., Wang, J., & Cheng, R. (2015). Photocatalytic membrane reactor (PMR) for virus removal in water: Performance and mechanisms. Chemical Engineering Journal, 277, 124-129. doi:10.1016/j.cej.2015.04.117.



DOI: https://doi.org/10.22146/ajche.65952

Article Metrics

Abstract views : 1467 | views : 828

Refbacks

  • There are currently no refbacks.


ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.