Hydrothermal Treatment of Herb Residue for Solid Fuel Production


Fredy Surahmanto(1*), Didik Nurhadiyanto(2), Mujiyono Mujiyono(3), Chinnathan Areeprasert(4), Mochamad Syamsiro(5)

(1) Yogyakarta State University, Indonesia
(2) Yogyakarta State University, Indonesia
(3) Yogyakarta State University, Indonesia
(4) Kasetsart University, Thailand
(5) Janabadra University, Indonesia
(*) Corresponding Author


Hydrothermal processing is appraised as one of  advanced technologies for wet solid waste handling. In this study, herb residue was subjected to hydrothermal treatment. Calorific value, yield, and also proximate analysis of obtained hydro-char were investigated. A cylindrical reactor with an internal volume of 2.5 Litres made of stainless steel and a low-tech component was used in the experiment. The reactor was equipped with a stirrer to ensure heat transfer took place through the entire parts of the solid-water mixture. Solid products were dried by a microwave oven before analysis. The results show that the final temperature, holding time, and solid-water ratio have various effects on the hydro-char yield, calorific value, and proximate analysis of the hydrothermal products. The hydro-char yield decreased with the increase in final temperature and holding time. Meanwhile, the highest hydro-char yield was obtained at the solid-water ratio of ¼. The hydro-char calorific value increased with the increase in final temperature, holding time, and solid-water ratio. The rise in final temperature, holding time, and solid-water ratio resulted in  a lower moisture content and volatile matter but higher fixed carbon. Meanwhile, the ash content increased with the solid-to-water ratio.


herb residue; hydrothermal; production; solid fuel; treatment

Full Text:



  1. Ahmad, T. Yuliansyah, Tsuyoshi Hirajima, Satoshi Kumagai, and Keiko Sasaki. 2010. “Production of Solid Biofuel from Agricultural Wastes of the Palm Oil Industry by Hydrothermal Treatment.” Waste and Biomass Valorization 1 (4): 395–405. doi:10.1007/s12649-010-9045-3.
  2. Alam, Md Tanvir, Jang Soo Lee, Sang Yeop Lee, Dhruba Bhatta, Kunio Yoshikawa, and Yong Chil Seo. 2019. “Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass.” Energies 12 (22). doi:10.3390/en12224390.
  3. Basso, Daniele, Francesco Patuzzi, Daniele Castello, Marco Baratieri, Elena Cristina Rada, Elsa Weiss-Hortala, and Luca Fiori. 2016. “Agro-Industrial Waste to Solid Biofuel through Hydrothermal Carbonization.” Waste Management 47: 114–121. doi:10.1016/j.wasman.2015.05.013.
  4. Fiori, Luca, Daniele Basso, Daniele Castello, and Marco Baratieri. 2014. “Hydrothermal Carbonization of Biomass: Design of a Batch Reactor and Preliminary Experimental Results.” Chemical Engineering Transactions 37: 55–60. doi:10.3303/CET1437010.
  5. Funke, Axel, and Felix Ziegler. 2010. “Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering.” Biofuels, Bioproducts & Biorefining 4 (2): 160–177. doi:https://doi.org/10.1002/bbb.198.
  6. Gabungan Pengusaha Jamu dan Obat Tradisional Indonesia. 2018. “Keanggotaan.”
  7. Garrote, G., H. Domínguez, and J. C. Parajó. 1999. “Hydrothermal Processing of Lignocellulosic Materials.” Holz Als Roh - Und Werkstoff 57 (3): 191–202. doi:10.1007/s001070050039.
  8. He, Xiao, Anthony K. Lau, and Shahab Sokhansanj. 2019. “Effect of Moisture on Gas Emissions from Stored Woody Biomass.” Energies 13 (1). doi:10.3390/en13010128.
  9. Huangfu, Yibo, Haixi Li, Xiaofu Chen, Chunyu Xue, Chang Chen, and Guangqing Liu. 2014. “Effects of Moisture Content in Fuel on Thermal Performance and Emission of Biomass Semi-Gasified Cookstove.” Energy for Sustainable Development 21 (1). International Energy Initiative: 60–65. doi:10.1016/j.esd.2014.05.007.
  10. Jain, Akshay, Rajasekhar Balasubramanian, and M. P. Srinivasan. 2016. “Hydrothermal Conversion of Biomass Waste to Activated Carbon with High Porosity: A Review.” Chemical Engineering Journal 283 (August): 789–805. doi:10.1016/j.cej.2015.08.014.
  11. Lee, Zhan Sheng, Sim Yee Chin, and Chin Kui Cheng. 2019. “An Evaluation of Subcritical Hydrothermal Treatment of End-of-Pipe Palm Oil Mill Effluent.” Heliyon 5 (6). doi:10.1016/j.heliyon.2019.e01792.
  12. Leng, Songqi, Wenting Li, Chao Han, Linlin Chen, Jie Chen, Liangliang Fan, Qian Lu, Jun Li, Lijian Leng, and Wenguang Zhou. 2020. “Aqueous Phase Recirculation during Hydrothermal Carbonization of Microalgae and Soybean Straw: A Comparison Study.” Bioresource Technology 298 (November 2019). Elsevier: 122502. doi:10.1016/j.biortech.2019.122502.
  13. Liu, Yuxue, Shuai Yao, Yuying Wang, Haohao Lu, Satinder Kaur Brar, and Shengmao Yang. 2017. “Bio- and Hydrochars from Rice Straw and Pig Manure: Inter-Comparison.” Bioresource Technology 235. Elsevier Ltd: 332–337. doi:10.1016/j.biortech.2017.03.103.
  14. Lu, Xiaowei, Perry J. Pellechia, Joseph R.V. Flora, and Nicole D. Berge. 2013. “Influence of Reaction Time and Temperature on Product Formation and Characteristics Associated with the Hydrothermal Carbonization of Cellulose.” Bioresource Technology 138. Elsevier Ltd: 180–190. doi:10.1016/j.biortech.2013.03.163.
  15. Machmudah, Siti, Dwi Setyorini, Sugeng Winardi, Wahyudiono, Hideki Kanda, and Motonobu Goto. 2019. “Microparticles Formation of Ganoderma Lucidum Extract by Electrospraying Method.” ASEAN Journal of Chemical Engineering 19 (2): 74–82. doi:10.22146/ajche.52004.
  16. Meng, Dawei, Zili Jiang, Yoshikawa Kunio, and Hongyan Mu. 2012. “The Effect of Operation Parameters on the Hydrothermal Drying Treatment.” Renewable Energy 42. Elsevier Ltd: 90–94. doi:10.1016/j.renene.2011.09.011.
  17. Merzari, Fabio, Michela Lucian, Maurizio Volpe, Gianni Andreottola, and Luca Fiori. 2018. “Hydrothermal Carbonization of Biomass: Design of a Bench-Scale Reactor for Evaluating the Heat of Reaction.” Chemical Engineering Transactions 65 (2011): 43–48. doi:10.3303/CET1865008.
  18. Nonaka, Moriyasu, Tsuyoshi Hirajima, and Keiko Sasaki. 2011. “Upgrading of Low Rank Coal and Woody Biomass Mixture by Hydrothermal Treatment.” Fuel 90 (8): 2578–2584. doi:10.1016/j.fuel.2011.03.028.
  19. Park, Ki Young, Kwanyong Lee, and Daegi Kim. 2018. “Characterized Hydrochar of Algal Biomass for Producing Solid Fuel through Hydrothermal Carbonization.” Bioresource Technology 258 (February). Elsevier: 119–124. doi:10.1016/j.biortech.2018.03.003.
  20. Román, S., J. M.V. Nabais, C. Laginhas, B. Ledesma, and J. F. González. 2012. “Hydrothermal Carbonization as an Effective Way of Densifying the Energy Content of Biomass.” Fuel Processing Technology 103: 78–83. doi:10.1016/j.fuproc.2011.11.009.
  21. Román, Silvia, Judy Libra, Nicole Berge, Eduardo Sabio, Kyoung Ro, Liang Li, Beatriz Ledesma, Andrés Alvarez, and Sunyoung Bae. 2018. “Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review.” Energies 11 (1): 1–28. doi:10.3390/en11010216.
  22. Ruksathamcharoen, Sirawasith, Teerapong Chuenyam, Pimpet Stratong-on, Hideki Hosoda, Lu Ding, and Kunio Yoshikawa. 2019. “Effects of Hydrothermal Treatment and Pelletizing Temperature on the Mechanical Properties of Empty Fruit Bunch Pellets.” Applied Energy 251 (April). Elsevier: 113385. doi:10.1016/j.apenergy.2019.113385.
  23. Saba, Akbar, Pretom Saha, and M. Toufiq Reza. 2017. “Co-Hydrothermal Carbonization of Coal-Biomass Blend: Influence of Temperature on Solid Fuel Properties.” Fuel Processing Technology 167 (August): 711–720. doi:10.1016/j.fuproc.2017.08.016.
  24. Sevilla, M., and A. B. Fuertes. 2009. “The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose.” Carbon 47 (9). Elsevier Ltd: 2281–2289. doi:10.1016/j.carbon.2009.04.026.
  25. Sheng, Changdong, and J. L.T. Azevedo. 2005. “Estimating the Higher Heating Value of Biomass Fuels from Basic Analysis Data.” Biomass and Bioenergy 28 (5): 499–507. doi:10.1016/j.biombioe.2004.11.008.
  26. Shrestha, Ankita, Bishnu Acharya, and Aitazaz A. Farooque. 2021. “Study of Hydrochar and Process Water from Hydrothermal Carbonization of Sea Lettuce.” Renewable Energy 163. Elsevier Ltd: 589–598. doi:10.1016/j.renene.2020.08.133.
  27. Statistics, Sub-directorate of Horticulture. 2018. Statistics of Medicinal Plants Indonesia 2018. BPS-Statistics Indonesia.
  28. Surup, Gerrit Ralf, James J. Leahy, Michael T. Timko, and Anna Trubetskaya. 2020. “Hydrothermal Carbonization of Olive Wastes to Produce Renewable, Binder-Free Pellets for Use as Metallurgical Reducing Agents.” Renewable Energy 155. Elsevier Ltd: 347–357. doi:10.1016/j.renene.2020.03.112.
  29. Thipkhunthod, Puchong, Vissanu Meeyoo, Pramoch Rangsunvigit, Boonyarach Kitiyanan, Kitipat Siemanond, and Thirasak Rirksomboon. 2005. “Predicting the Heating Value of Sewage Sludges in Thailand from Proximate and Ultimate Analyses.” Fuel 84 (7–8): 849–857. doi:10.1016/j.fuel.2005.01.003.
  30. Wang, Caiwei, Shouyu Zhang, Shunyan Wu, Mengyuan Sun, and Junfu Lyu. 2020. “Multi-Purpose Production with Valorization of Wood Vinegar and Briquette Fuels from Wood Sawdust by Hydrothermal Process” 282 (July).
  31. Wang, P., H. Yu, and S. Zhan. 2012. “The Catalytic Pyrolysis of Herb Residue from the Chinese Medicine Industry.” Energy Sources, Part A: Recovery, Utilization and Environmental Effects 34 (23): 2192–2202. doi:10.1080/15567036.2010.495974.
  32. Wiedner, Katja, Christophé Naisse, Cornelia Rumpel, Alessandro Pozzi, Peter Wieczorek, and Bruno Glaser. 2013. “Chemical Modification of Biomass Residues during Hydrothermal Carbonization - What Makes the Difference, Temperature or Feedstock?” Organic Geochemistry 54: 91–100. doi:10.1016/j.orggeochem.2012.10.006.
  33. Yang, Haiping, Rong Yan, Hanping Chen, Dong Ho Lee, and Chuguang Zheng. 2007. “Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis.” Fuel 86: 1781–1788. doi:10.1016/j.fuel.2006.12.013.

DOI: https://doi.org/10.22146/ajche.62594

Article Metrics

Abstract views : 975 | views : 439


  • There are currently no refbacks.