The Effect of Amino-functionalization on Photoluminescence Properties of Sugarcane Bagasse-derived Carbon Quantum Dots

Muhammad Wahyu Nugraha(1), Nonni Soraya Sambudi(2*), Laksmi Dewi Kasmiarno(3), Norashikin Ahmad Kamal(4)

(1) Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia
(2) Centre of Urban Resource Sustainability (CUReS), Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610, Malaysia
(3) Department of Chemical Engineering, Universitas Pertamina, Simprug, Jakarta Selatan, 12220, Indonesia
(4) Department of Civil Engineering, Universiti Teknologi MARA (UiTM) Shah Alam, Selangor, 40450, Malaysia
(*) Corresponding Author


In the present study, amino-functionalized carbon quantum dots (N-CQDs) were prepared from sugarcane bagasse using a simple one-pot hydrothermal method. Both ethylenedinitrilotetraacetic (EDTA) & ethylenediamine (EDA) were used as carbon and amino sources, respectively. The emerging utilization of natural carbon precursors is critically essential considering its low cost, eco-friendly, and unexploited by-products (e.g., sugarcane bagasse), which may have sustainable economic and strategic benefits. The as-prepared N-CQDs were characterized using High-Resolution Transmission Electron Microscope (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), UV-vis absorption spectroscopy, and photoluminescence spectroscopy. The influences of amine groups were investigated. The as-prepared N-CQDs photoluminescence intensity increased and quenched significantly with EDTA and EDA amino-functionalization, respectively, with the highest quantum yield at 21.21%, 2.4 times higher than non-functionalized CQDs. Furthermore, the amino-functional groups can alter the CQDs structure and particle size ranging from 4.197±1.058 nm to 9.704±1.428 nm. Hence, the N-CQDs produced exhibit highly tunable photoluminescence and particle size potentially applicable in diverse applications.


Amino-functionalization; Carbon quantum dots; Quantum yield; Sugarcane bagasse; Tunable

Full Text:



  1. Chandel, A. K., da Silva, S. S., Carvalho, W., & Singh, O. V. (2012). Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. Journal of Chemical Technology and Biotechnology, 87, 11–20.
  2. Chandra, S., Pathan, S. H., Mitra, S., Modha, B. H., Goswami, A., & Pramanik, P. (2012). Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Advances, 2, 3602.
  3. Chandra, S., Patra, P., Pathan, S. H., Roy, S., Mitra, S., Layek, A., … Goswami, A. (2013). Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. Journal of Materials Chemistry B, 1, 2375.
  4. Das, R., Bandyopadhyay, R., & Pramanik, P. (2018). Carbon quantum dots from natural resource: A review. Materials Today Chemistry, 8, 96–109.
  5. Di, J., Xia, J., Chen, X., Ji, M., Yin, S., Zhang, Q., & Li, H. (2017). Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis. Carbon, 114, 601–607.
  6. Ding, H., Yu, S.-B., Wei, J.-S., & Xiong, H.-M. (2016). Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano, 10, 484–491.
  7. Eslami, A., Borghei, S. M., Rashidi, A., & Takdastan, A. (2018). Preparation of activated carbon dots from sugarcane bagasse for naphthalene removal from aqueous solutions. Separation Science and Technology, 53, 2536–2549.
  8. Freire, R. M., Le, N. D. B., Jiang, Z., Kim, C. S., Rotello, V. M., & Fechine, P. B. A. (2018). NH2-rich Carbon Quantum Dots: A protein-responsive probe for detection and identification. Sensors and Actuators B: Chemical, 255, 2725–2732.
  9. Huang, G., Chen, X., Wang, C., Zheng, H., Huang, Z., Chen, D., & Xie, H. (2017). Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications. RSC Adv., 7, 47840–47847.
  10. Jameson, D. M. (2014). Introduction to Fluorescence. In Introduction to Fluorescence. CRC Press.
  11. Jang, M.-H., Ha, H. D., Lee, E.-S., Liu, F., Kim, Y.-H., Seo, T. S., & Cho, Y.-H. (2015). Is the Chain of Oxidation and Reduction Process Reversible in Luminescent Graphene Quantum Dots? Small, 11, 3773–3781.
  12. Ji, T., Fan, P., Li, X., Mei, Z., Mao, Y., & Tian, Y. (2019). EDTA-bonded multi-connected carbon-dots and their Eu3+ complex: Preparation and optical properties. RSC Advances, 9, 10645–10650.
  13. Liao, B., Wang, W., Deng, X., He, B., Zeng, W., Tang, Z., & Liu, Q. (2016). A facile one-step synthesis of fluorescent silicon quantum dots and their application for detecting Cu 2+. RSC Advances, 6, 14465–14467.
  14. Liu, X. J., Guo, M. L., Huang, J., & Yin, X. Y. (2013). Improved fluorescence of carbon dots prepared from bagasse under alkaline hydrothermal conditions. BioResources, 8, 2537–2546.
  15. Liu, X., Pang, J., Xu, F., & Zhang, X. (2016). Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan. Scientific Reports, 6, 1–8.
  16. Liu, Y., Liu, Y., Park, S.-J., Zhang, Y., Kim, T., Chae, S., … Kim, H.-Y. (2015). One-step synthesis of robust nitrogen-doped carbon dots: acid-evoked fluorescence enhancement and their application in Fe 3+ detection. Journal of Materials Chemistry A, 3, 17747–17754.
  17. Madrakian, T., Maleki, S., Gilak, S., & Afkhami, A. (2017). Turn-off fluorescence of amino-functionalized carbon quantum dots as effective fluorescent probes for determination of isotretinoin. Sensors and Actuators, B: Chemical, 247, 428–435.
  18. Qi, H., Teng, M., Liu, M., Liu, S., Li, J., Yu, H., … Guo, Z. (2019). Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. Journal of Colloid and Interface Science, 539, 332–341.
  19. Qu, A., Xie, H., Xu, X., Zhang, Y., Wen, S., & Cui, Y. (2016). High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity. Applied Surface Science, 375, 230–241.
  20. Sandeep Kumar, G., Roy, R., Sen, D., Ghorai, U. K., Thapa, R., Mazumder, N., … Chattopadhyay, K. K. (2014). Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence. Nanoscale, 6, 3384.
  21. Sarkar, S., Banerjee, D., Ghorai, U. K., Das, N. S., & Chattopadhyay, K. K. (2016). Size dependent photoluminescence property of hydrothermally synthesized crystalline carbon quantum dots. Journal of Luminescence, 178, 314–323.
  22. Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., & Okamoto, A. (2012). Optically tunable amino-functionalized graphene quantum dots. Advanced Materials, 24, 5333–5338.
  23. Thambiraj, S., and Shankaran, D. (2016). Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Applied Surface Science, 390, 435–443.
  24. Wu, M., Wang, Y., Wu, W., Hu, C., Wang, X., Zheng, J., … Qiu, J. (2014). Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon, 78, 480–489.
  25. Zainal Abidin, N. H., Wongso, V., Hui, K. C., Cho, K., Sambudi, N. S., Ang, W. L., & Saad, B. (2020). The effect of functionalization on rice-husks derived carbon quantum dots properties and cadmium removal. Journal of Water Process Engineering, 38, 101634.
  26. Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L., & Liu, W. (2012). Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications, 48, 7955.


Article Metrics

Abstract views : 924 | views : 415


  • There are currently no refbacks.