Composite of Hydroxyapatite-Fe3O4 for the Adsorption of Methylene Blue

Nur Hafizah Zainal Abidin(1), Nonni Soraya Sambudi(2*), Norashikin Ahmad Kamal(3)

(1) Chemical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Malaysia
(2) Chemical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Malaysia
(3) Faculty of Civil Engineering , Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
(*) Corresponding Author


The utilization of hydroxyapatite as an adsorbent has been extensively tested to remove the dye and heavy metal. Yet the adsorbent loss to the environment may lead to secondary pollutant issues. Consequently, the hydroxyapatite was incorporated with Fe3O4 amount variation to solve the secondary pollutant problem by utilizing the magnetic properties of Fe3O4 to recollect the adsorbent. In this work, FESEM images showed a mixture of nano-sizes rods and spherical particles corresponded to the presence of hydroxyapatite and Fe3O4 as a composite. The study found that hydroxyapatite- Fe3O4 (100 wt %) could eliminate 12.434 mg methylene blue/g adsorbent after 4 hours. The hydroxyapatite also gained improvement in its surface area from 59.8m2/g to 75.2m2/g when Fe3O4 is added. In addition, the adsorption of methylene blue fits the Freundlich isotherms and pseudo-second-order kinetic model. Furthermore, the methylene blue removal using hydroxyapatite-Fe3O4 composite can be kept at 80% even after 4 times experiments, showing the recyclability of hydroxyapatite-Fe3O4.


Composite; Fe3O4; Hydroxyapatite; Methylene Blue; Recyclability

Full Text:



  1. Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2017). “Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon,” Arabian J. Chem., S3381-S3393
  2. Alqadami, A.A., Khan, M.A., M. Otero, Siddiqui, M.R., Jeon, B-H., and Batoo, K.M., (2018). "A magnetic nanocomposite produced from camel bones for an efficient adsorption of toxic metals from water," J. Cleaner Prod., 178, 293-304.
  3. Anuar, F. I., Hadibarata, T., Muryanto, Yuniarto, A., Priyandoko, D., & Sari, A. A. (2019). “Innovative chemically modified biosorbent for removal of Procion Red,” International Journal of Technology, 10(4), 776–786.
  4. Basirun, W. J., Nasiri-Tabrizi, B., & Baradaran, S. (2018). “Overview of Hydroxyapatite–Graphene Nanoplatelets Composite as Bone Graft Substitute: Mechanical Behavior and In-vitro Biofunctionality,” Crit. Rev. Solid State and Mater. Sci., 43(3), 177-212.
  5. Cui, L., Wang, Y., Hu, L., Gao, L., Du, B., & Wei, Q. (2015). “Mechanism of Pb(ii) and methylene blue adsorption onto magnetic carbonate hydroxyapa-tite/graphene oxide,” RSC Advances, 5(13), 9759-9770.
  6. Dogan, O., Bodur, B., & Inan, G. (2018). “Kinetic and thermodynamic studies of Cu(II) adsorption onto calcium phosphate,” Desalin. Water Treat., 111, 322-328.
  7. Du, K., Liu, X., Li, S., Qiao, L., & Ai, H. (2018). “Synthesis of Cu2+ Chelated Cellulose/Magnetic Hydroxyapatite Particles Hybrid Beads and Their Potential for High Specific Adsorption of Histidine-Rich Proteins,” ACS Sustainable Chem. Eng., 6(9), 11578-11586.
  8. Eliaz, N., & Metoki, N. (2017). “Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications,” Materials (Basel, Switzerland), 10(4), 334.
  9. Ge, I. T. K., Nugraha, M. W., Ahmad Kamal, N., & Sambudi, N. S. (2019). “Composite of kaolin/sodium alginate (SA) beads for methylene blue adsorption,” ASEAN Journal of Chemical Engineering, 19(2), 100–109.
  10. Gheisari, H., Karamian, E., & Abdellahi, M. (2015). “A novel hydroxyapatite –Hardystonite nanocomposite ceramic,” Ceram. Int., 41(4), 5967-5975.
  11. Gökçekuş, H., Umut, T., & LaMoreaux, J. W. (2011). Survival and sustainability: concerns in the 21st century: Springer-Verlag Berlin Heidelberg.
  12. Graba, Z., Hamoudi, S., Bekka, D., Bezzi, N., & Boukherroub, R. (2015). “Influence of adsorption parameters of basic red dye 46 by the rough and treated Algerian natural phosphates,“ J. Ind. Eng. Chem.”, 25, 229-238.
  13. Guesmi, Y., Agougui, H., Lafi, R., Jabli, M., & Hafiane, A. (2018). “Synthesis of hydroxyapatite-sodium alginate via a co-precipitation technique for efficient adsorption of Methylene Blue dye,” J. Mol. Liq., 249, 912-920.
  14. Han, R., Li, W., Pan, W., Zhu, M., Zhou, D., & Li, F.-s. (2014). “1D Magnetic Materials of Fe3O4 and Fe with High Performance of Microwave Absorption Fabricated by Electrospinning Method,” Scientific Reports, 4, 7493.
  15. S, Hokkanen, A. Bhatnagar, V. Srivastava, V. Suorsa, and M. Sillanpää,  (2018) "Removal of Cd2+, Ni2+ and PO43− from aqueous solution by hydroxyapatite-bentonite clay-nano-cellulose composite," Int. J. Biol. Macromol., (118), 903-912.
  16. Hosseinzadeh, H., & Ramin, S. (2018). “Fabrication of starch-graft-poly(acrylamide)/graphene oxide/hy-droxylapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution,” Int. J. Biol. Macromol., 106, 101-115.
  17. Janusz, W., & Skwarek, E. (2018). “Effect of Co(II) ions adsorption in the hydroxyapatite/aqueous NaClO4 solu-tion system on particles electrokinetics.” Physicochem. Probl. Miner. Process., 54, 31-39.
  18. Kant, R. (2012). “Textile dyeing industry an environmental hazard,” Natural Science, Vol.04 No.01, 5.
  19. Kim, J., Sambudi, N. S., & Cho, K. (2019). “Removal of Sr2+ using high-surface-area hydroxyapatite synthesized by non-additive in-situ precipitation,” J. Environ. Manage., 231, 788-794.
  20. Li, L., Iqbal, J., Zhu, Y., Zhang, P., Chen, W., Bhatnagar, A., et al., "Chitosan/Ag-hydroxyapatite nanocomposite beads as a potential adsorbent for the efficient removal of toxic aquatic pollutants, "Int. J. Biol. Macromol., (120), 1752-1759, 2018/12/01/ 2018.
  21. Mahmud, K., Azharul Islam, M., Mitsionis, A., Albanis, T., & Vaimakis, T. (2012). “Adsorption of direct yellow 27 from water by poorly crystalline hydroxyapatite prepared via precipitation method,” Desalin. Water Treat., 41(1-3), 170-178.
  22. Nalbandian, L., Patrikiadou, E., Zaspalis, V., Patrikidou, A., Hatzidaki, E., & N. Papandreou, C. (2016). “Magnetic Nanoparticles in Medical Diagnostic Applications: Synthesis, Charac-terization, and Proteins Conjugation,” Curr. Nanosci., 12(4), 455-468.
  23. Nasar, A., & Mashkoor, F. (2019). “Application of polyaniline-based adsorbents for dye removal from water and wastewater review,” Environ. Sci. Pollut. Res., 26(6), 5333-5356.
  24. Nguyen, V. C., & Pho, Q. H. (2014). “Preparation of Chitosan Coated Magnetic Hydroxyapatite Nano-particles and Application for Adsorption of Reactive Blue 19 and Ni2+ Ions,” Sci. World J.
  25. Nyankson, E., Adjasoo, J., Efavi, J. K., Amedalor, R., Yaya, A., Manu, G. P., … Amartey, N. A. (2019). “Characterization and evaluation of zeolite A/Fe3O4 nanocomposite as a potential adsorbent for removal of organic molecules from wastewater,” J. Chem.
  26. Panwar, V., Kumar, P., Bansal, Ray, S.S., and Jain, S.L., (2015) "PEGylated magnetic nanoparticles (PEG@Fe3O4) as cost effective alternative for oxidative cyanation of tertiary amines via CH activation," Appl. Catal., A, (498), 25-31, 2015/06/05/ 2015.
  27. Phasuk, A., Srisantitham, S., Tuntulani, T., & Anutrasakda, W. (2018). “Facile synthesis of magnetic hydroxyapatite-supported nickel oxide nanocomposite and its dye adsorption characteristics,” Adsorption, 24(2), 157-167.
  28. Ramesh,S, A. N. Natasha, C. Y. Tan, L. T. Bang, A. Niakan, J. Purbolaksono, et al., (2015) "Characteristics and properties of hydoxyapatite derived by sol–gel and wet chemical precipitation methods," Ceram. Int., (41), 10434-10441.
  29. Reddy, M. P., Venugopal, A., & Subrahmanyam, M. (2007). “Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension,” Appl. Catal., B, 69(3), 164-170.
  30. Saber-Samandari, S., Saber-Samandari, S., Nezafati, N., & Yahya, K. (2014). “Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads,” Journal of Environmen. Manage., 146, 481-490.
  31. Sambudi, N.S., Cho, S., and Cho, K. (2016) "Porous hollow hydroxyapatite microspheres synthesized by spray pyrolysis using a microalga template: preparation, drug delivery, and bioactivity," RSC Advances, (6), 43041-43048.
  32. Sivasubramanian, V. (2018). Bioprocess Engineering for a Green Environment (1 ed.): CRC Press.
  33. Tan, Y., Liu, Y., Luo, S., & Li, J. (2019). Hydroxyapatite Applications in Environmental Monitoring and Treatment Advances in Chemical Engineering. (September). Retrieved from
  34. Wang, Y.-X. Liu, H.-H. Lu, R.-Q. Yang, and S.-M. Yang, "Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions," J. Solid State Chem., (261), 53-61.
  35. Yelten-Yilmaz, A., & Yilmaz, S. (2018). “Wet chemical precipitation synthesis of hydroxyapatite (HA) powders,” Ceram. Int., 44(8), 9703-9710.
  36. Youness, R. A., Taha, M. A., El-Kheshen, A. A., & Ibrahim, M. (2018). “Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass,” Ceram. Int., 44(17), 20677-20685.
  37. Yusoff, A. H. M., Salimi, M. N., & Jamlos, M. F. (2017). “Synthesis and characterization of biocompatible Fe3O4 nanoparticles at different pH,” AIP Conference Proceedings, 1835(1), 020010.


Article Metrics

Abstract views : 148 | views : 136


  • There are currently no refbacks.