Oil Refinery Heat Exchanger Network Cleaning Scheduling Strategy with Unit Cleanability Consideration

https://doi.org/10.22146/ajche.51880

Hairul Huda(1), Renanto Handogo(2*), Totok Ruki Biyanto(3), Wei Wu(4), Vincentius Surya Kurnia Adi(5)

(1) Chemical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
(2) Chemical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
(3) Engineering Physics Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
(4) Chemical Engineering Department, National Cheng Kung University
(5) Chemical Engineering Department, National Chung Hsing University
(*) Corresponding Author

Abstract


Heat exchanger networks (HENs) play an important role in the chemical industries. Unfortunately, fouling is inevitable in heat exchangers operation. Therefore, the optimal cleaning procedure is required to restore heat exchangers' performance periodically. A systematic cleaning scheduling strategy for the heat exchanger network in an oil refinery is proposed in this work. There are 11 operating heat exchangers in an oil refinery to be reviewed. Different cleaning decision scenarios based on the overall heat transfer coefficient are explored for optimal cleaning schedule performance. The daily number of exchangers available to be cleaned i.e., the unit cleanability, is investigated while minimizing the energy consumption and the additional heat requirement due to the offline heat exchanger under cleaning procedure. The HEN performance and the energy-saving from the cleaning procedures are benchmarked with the uncleaned HEN. The results indicate that the cleaning procedure significantly increases the HEN performance and simultaneously reduces the heat requirement if compared to the untreated HEN benchmark. The possible conflicting situation is discussed when some heat exchangers are waiting to be cleaned due to the unit cleanability restriction, which allows the overall heat transfer coefficient to be below the allowed limit. Therefore, nonconflicting cleaning scheduling is also addressed in this work by relaxing the unit cleanability limit. Furthermore, the optimal cleaning schedule is also suggested for user reference. In this work, the optimum cleaning schedule with minimum energy consumption and maximum energy saving could be achieved when cleaning decision limit is set at 40% decrease of overall heat transfer coefficient. In the contrast, the lowest number of cleaning procedures is associated with 90% decrease in the overall heat transfer coefficient as the cleaning decision limit.


Keywords


Cleaning scheduling; Furnace; Heat duty; HEN; Overall heat transfer coefficient

Full Text:

PDF


References

  1. Adloor, S. D., Ismaili, R. Al, Wilson, D. I., and Vassiliadis, V. S. (2018). "Errata: Heat exchanger network cleaning scheduling: From optimal control to mixed-integer decision making," Comput. and Chem. Eng., 115, 243–245.
  2. Angsutorn, N., Siemanond, K., and Chuvaree, R. (2014). "Heat Exchanger Network Synthesis using MINLP Stage-wise Model with Pinch Analysis and Relaxation," Comput. Aided Process Eng. 33, 139-144.
  3. Biyanto, T.R., Ramasamy, M., Jameran, A. B., and Fibrianto, H. Y. (2016). "Thermal and Hydraulic Impacts Consideration in Refinery Crude Preheat Train Cleaning Scheduling Using Recent Stochastic Optimization Methods", Appl. Therm. Eng., 108, 1436–1450.
  4. Biyanto, Totok R., Khairansyah, M. D., Bayuaji, R., Firmanto, H., and Haksoro, T. (2015). "Imperialist Competitive Algorithm (ICA) for Heat Exchanger Network (HEN) Cleaning Schedule Optimization," Procedia Comput. Sci., 72, 5–12.
  5. Coletti, F., Joshi, H. M., Macchietto, S., and Hewitt, G. F. (2015). Crude Oil Fouling: Deposit Characterization, Measurements, and Modeling, In Crude Oil Fouling: Deposit Characterization, Measurements, and Modeling, Gulf Professional Publishing, London, UK.
  6. Diaby, A. L., Miklavcic, S. J., and Addai-Mensah, J. (2016). "Optimization of scheduled cleaning of fouled heat exchanger network under ageing using genetic algorithm," Chem. Eng. Res. Des., 113, 223–240
  7. Gonçalves, C. D. O., Queiroz, E. M., Pessoa, F. L. P., Liporace, F. S., Oliveira, S. G., and Costa, A. L. H. (2014). "Heuristic optimization of the cleaning schedule of crude preheat trains," Appl. Therm. Eng., 73(1), 1–12.
  8. Ishiyama, E. M., Heins, A. V., Paterson, W. R., Spinelli, L., and Wilson, D. I. (2010). "Scheduling cleaning in a crude oil preheat train subject to fouling: Incorporating desalter control," Appl. Therm. Eng., 30, 1852–1862.
  9. Ishiyama, Edward M., Paterson, W. R., and Wilson, D. I. (2009). "The Effect of Fouling on Heat Transfer, Pressure Drop, and Throughput in Refinery Preheat Trains: Optimization of Cleaning Schedules," Heat Transf. Eng., 30, 805–814.
  10. Kakaç, S., Liu, H., and Pramuanjaroenkij, A. (2012). Heat Exchangers : Selection, Rating, and Thermal Design 3rd ed. CRC Press, Taylor & Francis Group, Boca Raton, Florida, U.S.A.
  11. Lavaja, J. H., and Bagajewicz, M. J. (2004). "On a New MILP Model for the Planning of Heat-Exchanger Network Cleaning," Ind. Eng. Chem. Res., 43(21), 3924–3938.
  12. Licindo, D., Handogo, R., and Sutikno, J. P. (2015). "Optimization on Scheduling for Cleaning Heat Exchangers in The Heat Exchanger Networks," Chem. Eng. Trans., 45, 835–840.
  13. Lozano Santamaria, F., and Macchietto, S. (2018). "Integration of Optimal Cleaning Scheduling and Control of Heat Exchanger Networks Undergoing Fouling: Model and Formulation," Ind. Eng. Chem. Res., 57, 12842–12860
  14. Macchietto, S., Coletti, F., and Bejarano, E. D. (2018). "Energy Recovery in Heat Exchanger Networks in a Dynamic, Big-data World: Design, Monitoring, Diagnosis and Operation," Comput. Aided Chem. Eng,. 44, 1147-1152.
  15. Pogiatzis, T., Ishiyama, E. M., Paterson, W. R., Vassiliadis, V. S., and Wilson, D. I. (2012). "Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing," Appl. Energy, 89, 60–66.
  16. Rodriguez, C., and Smith, R. (2007). "Optimization of Operating Conditions for Mitigating Fouling in Heat Exchanger Networks," Chem. Eng. Res. Des., 85, 839–851.
  17. Rossiter, A. P., and Jones, B. P. (2015). Energy Management and Efficiency for the Process Industries 1st ed., Wiley-AIChE, Canada.
  18. Sanaye, S., and Niroomand, B. (2007). "Simulation of Heat Exchanger Network (HEN) and Planning The Optimum Cleaning Schedule," Energy Convers. and Manag., 48, 1450–1461.
  19. Smaïli, F., Vassiliadis, V. S., and Wilson, D. I. (2001). "Mitigation of Fouling in Refinery Heat Exchanger Networks by Optimal Management of Cleaning," Energy and Fuels, 15, 1038–1056.
  20. Smaïli, F., Vassiliadis, V. S., and Wilson, D. I. (2002a). "Optimization of cleaning schedules in heat exchanger networks subject to fouling," Chem. Eng. Commun., 189, 1517–1549.
  21. Smaïli, F., Vassiliadis, V. S., and Wilson, D. I. (2002b). "Long-Term Scheduling Of Cleaning Of Heat Exchanger Networks Comparison Of Outer Approximation-Based Solutions with a Backtracking Threshold Accepting Algorithm," Chem. Eng. Res. Des., 80, 561–578..
  22. Varbanov, P. S., Walmsley, T. G., Walmsley, M., Klemeš, J. J., and Kravanja, Z. (2018). "Numerical Representation for Heat Exchanger Networks Binding Topology and Thermodynamics," Comput. Aided Chem. Eng., 43, 1457-1462.
  23. Wang, Y., Zhan, S., and Feng, X. (2015). "Optimization of Velocity for Energy Saving and Mitigating Fouling in a Crude Oil Preheat Train with Fixed Network Structure," Energy, 93, 1478–1488.
  24. Wilson, D. I. (2005). "Challenges in cleaning: Recent developments and future prospects," Heat Trans. Eng., 26, 51–59.



DOI: https://doi.org/10.22146/ajche.51880

Article Metrics

Abstract views : 6143 | views : 4711

Refbacks

  • There are currently no refbacks.


slot gacor

slot

slot gacor

slot

harum777

https://www.husavikgreenhostel.is/terms-conditions

situs toto

mpo slot

vadicasino

slot

sotong 88

slot88

SBCTOTO

slot777

naked link

slot gacor

Situs Gacor

Situs Slot777 Gacor

Kilau4D

Pusat4D

Pusat4D

Calon4D

Calon4D

Situs Depo 5K

Situs Deposit Qris 5000

Situs Deposit Qris 5000

slot gacor 88

bwo99 

mu138

https://www.shakespeare-navigators.com/hamlet/H47.html

vega168

RAJAVIGOR

Surga11

jogjatoto

jogjatoto

slot gacor

slot

togel online

Kilau4D

Pusat4D

Calon4D

Gaya4D

Gaya4D

calon4d

Racik198

https://recoveryemirate.com/

TEGUH777

slot gacor maxwin

neng4d

server Thailand

FAFA828

Slot

slot

nixtoto

slot pragmatic

slot gacor

situs slot gacor

idn poker

idn poker

idn poker

idn slot

kediritoto

Slot Gacor

Slot Gacor

Slot

slot gacor

royalplay

royal138

royal138

SITUS TOTO

slot gacor

rajavigor

https://www.egepalas.com.tr/

racik198

Situs gacor

sakti55

toto slot

kenahoki

naga15

multibet88

Joker81 Link Alternatif

owltoto

gayatoto

mogetoto

doritoto

rem4d

velbet4d

link slot gacor

slot gacor

slot88

mesinqq

slot

BOLA SBO

yaho777

Slot Zeus Gacor

Situs Deposit Dana 5000

Situs Deposit Qris 5000

Situs Deposit Dana 5000

CidukJP

Racik198

slot

ASIAN4D

NONA88

NONA88

slot gacor

kilau4d

kilau4d

pusat4d

https://akhilrabindra.com/gallery/

toto

gelora188

Surga88

slot gacor

uban4d

kenzototo

https://www.cambridgehub.org/contact

https://fsrenevis.com/caribbean-citizenship/

slot

slot

candu123

slot

Midasplay

https://www.onefinancialsolutions.co.uk/about-us/

https://seolocalbusiness.co.uk/blog/

SBCTOTO

SBCTOTO

SBCTOTO

SBCLIVE4D

TOGELJP

SBCTOTO

togel online terpercaya

https://www.cambridgehub.org/contact

https://fsrenevis.com/caribbean-citizenship/

https://staging.prorace.be/faq/

KAKI4D

link gacor

slot gacor

slot

link slot gacor

situs toto

kasih777

bintang11

petir108

slot pulsa

https://www.classroomforrent.net/event-wifi-router-rental-singapore/

asian4d

asian4d

ikon777

slot gacor

AMANAHTOTO

slot777

PEWE4D

slot depo 10k

wazeslot

dasi4d

slot mahjong

Midasplay

sega4d

toto slot

TOPIWANGI

TOPI WANGI

yolo4d

Rebahin

Surga88

kenzototo

kenzototo

kenzototo

kenzototo

kenzobet

kenzobet

kenzobet

kenzobet

kenzobet

kenzobet

biolabet

biolabet

biolabet

biolabet

slot88

rajavigor

slot

slot

racik198

https://naturpod.com/politicas-privacidad/

slot gacor

TOPI WANGI

gudanggacor

situs gacor

racik198

racik198

idnslot

https://www.sophiebrendle.com/

slot gacor

mantis88

mantis88

slot online

slot88 gacor

hoki108

jackpot108

slot gacor

slot gacor

bandar togel

link slot gacor

https://limratechnosys.com/career/

slot gacor

slot

SLOT DANA

slot gacor

calon4d

calon4d

togel slot

singa77

dagotogel

dagotogel

dagotogel

situs toto

Takis98

Takis98

Paris88

dasi4d

dasi4d

wazeslot

wazeslot

lv4d

kenzototo2

rezekitoto

slot gacor

https://sastrapapua.com/senang4d.html

https://logintop4d.com/

SENANG4D

Karyawan Lembaga Bantuan Hukum Pekanbaru Dapat Cuan Tambahan Dari Trik Bermain Mahjong Wins

slot gacor

situs toto

slot depo 5k

SLOT GACOR

SITUS TOGEL

situs toto slot online

slot gacor

slot gacor

slot gacor

tukul777

https://blackandinbusiness.com/op-eds/get-your-soul-food-fix/

https://theforbesmedia.com/

kenzototo

kenzototo

kenzototo

rezekitoto

rezekitoto

rezekitoto

slot88

slot deposit 1000

toto slot

situs toto slot

slot777

togel online

situs slot kasih777

gelora188

toto slot

situs tanpa pola

slot depo 10k

togel 4d

MPO500

Bolabos

Slot Mahjong

slot gacor

agen228

slot

sakti55 login

JPSONIC

jelas777