Fabrication of Cellulose Sponge: Effects of Drying Process and Cellulose Nanofiber Deposition on the Physical Strength

https://doi.org/10.22146/ajche.51313

Abdul Halim(1*), Yinchao Xu(2), Toshiharu Enomae(3)

(1) Department Department of Pulp and Paper Technology, Institute of Technology & Science Bandung, Indonesia Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
(2) Department of Light Chemistry Industry, School of Environmental and Natural Resources, Zhejiang University of Science and Technology
(3) Faculty of Life and Environmental Sciences, University of Tsukuba
(*) Corresponding Author

Abstract


Cellulose sponge was fabricated by regenerating cellulose from a xanthate solution. The solution, which contained sodium phosphate particles as a template to create sponge porosity, was dried at 55, 65, 75 and 85 °C for 2, 4, 6, and 8 h. Mass transfer during the initial and last stages of drying was controlled in terms of temperature and concentration differences, respectively. The activation energy and pre-exponential factor of the mass transfer coefficient were -51,841.947 kJ mol-1 and 7.26×109 m-2 h-1, respectively. Regenerated cellulose contained a crystalline type of cellulose II, and the crystallinity was independent of drying conditions. At a low drying temperature (T≤55 °C) and short drying period (t≤2h), the cellulose was unregenerated. At higher temperatures and longer drying periods, no relationship between temperature and physical strength was observed. Cellulose nanofiber (CNF) was added to the xanthate solution at a ratio of 1:100 of CNF to linter cellulose for xanthation; however, this did not affect the physical strength of the cellulose sponge for both mechanically and chemically fabricated CNF.


Keywords


Cellulose nanofiber; Cellulose sponge; Drying; Physical strength; Regenerated cellulose

Full Text:

PDF


References

  1. Boufi, S., González, I., Delgado-Aguilar, M., Tarrès, Q., Pèlach, M. À., Mutjé, P. (2016). “Nanofibrillated cellulose as an additive in papermaking process: A review”, Carbohydr. Polym., 154, 151-166.
  2. Cheng, H., Du, Y., Wang, B., Mao, Z., Xu, H., Zhang, L., Zhong, Y., Jiang, W., Wang, L., Sui, X. (2018). “Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting”, Chem. Eng. J., 338, 1-7.
  3. Du, Y., Cheng, H., Li, Y., Wang, B., Mao, Z., Xu, H., Zhang, L., Zhong, Y., Yan, X., Sui, X. (2018). “Temperature-responsive cellulose sponge with switchable pore size: Application as a water flow manipulator”, Mater. Lett., 210, 337-340.
  4. Geankoplis, C. J. (1993). Transport processes and unit operations, Prentice Hall, Englewood Cliffs, New Jersey, U. S. A.
  5. Gustaite, S., Kazlauske, J., Bobokalonov, J., Perni, S., Dutschk, V., Liesiene, J., Prokopovich, P. (2015). “Characterization of cellulose based sponges for wound dressings”, Colloids. Surf. A, 480, 336-342.
  6. Halim, A., Xu, Y., Enomae, T. (2018, July 26). “Physical Strength of Cellulose Sponge as Dye Adsorber.” The 9th Asian Symposium on Printing Technology (ASPT2018), Tokyo Big Sight, Tokyo, Japan.
  7. Halim, A., Xu, Y., Lin, K-H., Kobayashi, M., Kajiyama, M., Enomae, T. (2019). “Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane”, Sep. Purif. Technol., 224, 322-331.
  8. Isogai, A., Saito, T., Fukuzumi, H. (2011). “TEMPO-oxidized cellulose nanofibers”, Nanoscale, 3, 71-85.
  9. Jiang, F., Kondo, T., Hsieh, Y-L. (2016). “Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and Their self-assembled structures”, ACS Sustain. Chem. Eng., 4, 1697-1706.
  10. Joshi, M. K., Pant, H. R., Tiwari, A. P., Kim, H. J., Park, C. H., Kim, C. S. (2015). “Multi-layered macroporous three-dimensional nanofibrous scaffold via a novel gas foaming technique”, Chem. Eng. J., 275, 79-88.
  11. Joshi, M. K., Pant, H. R., Tiwari, A. P., Maharjan, B., Liao, N., Kim, H. J., Park, C. H., Kim, C. S. (2016). “Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in-vitro cell infiltration”, Carbohydr. Polym., 136, 154-162.
  12. Jozala, A. F., de Lencastre-Novaes, L. C., Lopes, A. M., Santos-Ebinuma, V. D. (2016). “Bacterial nanocellulose production and application: A 10-year overview”, Appl. Microbiol. Biotechnol., 100, 2063-2072.
  13. Kondo, T., Kose, R., Naito, H., Kasai, W. (2014). “Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers”, Carbohydr. Polym., 112, 284-290.
  14. Kose, R., Kasai, W., Kondo, T. (2011). “Switching surface properties of substrates by coating with a cellulose nanofiber having a high adsorbability”, Sen'i Gakkaishi, 67, 163-167.
  15. Kubo, J., Nakatsubo, T., Ito, K., Tajima, H. (2018). U. S. Pat. US 2018 / 0273644 A1.
  16. Lee, J-C., Lee, J-A., Lim, D-Y., Kim, K-Y. (2018). “Fabrication of cellulose nanofiber reinforced thermoplastic composites”, Fiber Polym., 19, 1753-1759.
  17. Lundahl, M. J., Cunha, A. G., Rojo, E., Papageorgiou, A. C., Rautkari, L., Arboleda, J. C., Rojas, O. J. (2016). “Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels”, Sci. Rep., 6, Article number 30695.
  18. Lyu, S., Yang, X., Shi, D., Qi, H., Jing, X., Li, S. (2017). “Effect of high temperature on compression property and deformation recovery of ceramic fiber reinforced silica aerogel composites”, Sci. China Technol. Sc., 60, 1681-1691.
  19. Märtson, M., Märtson, M., Viljanto, J., Hurme, T., Laippala, P., Saukko, P. (1999). “Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat”, Biomaterials, 20, 1989-1995.
  20. Nam, S., French, A. D., Condon, B. D., Concha, M. (2016). “Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II”, Carbohydr. Polym., 135, 1-9.
  21. Nandiyanto, A. B., and Okuyama, K. (2011). “Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges”, Adv. Powder Technol., 22, 1-19.
  22. Peng, H., Wang, H., Wu, J., Meng, G., Wang, Y., Shi, Y., Liu, Z., Guo, X. (2016). “Preparation of superhydrophobic magnetic cellulose sponge for removing oil from water”, Ind. Eng. Chem. Res., 55, 832-838.
  23. Petroudy, S. R., Sheikhi, P., Ghobadifar, P. (2017). “Sugarcane bagasse paper reinforced by cellulose nanofiber (CNF) and bleached softwood kraft (BSWK) pulp”, J. Polym. Environ., 25, 203-213.
  24. Sakakibara, K., Moriki, Y., Yano, H., Tsujii, Y. (2017). “Strategy for the improvement of the mechanical properties of cellulose nanofiber-reinforced high-density polyethylene nanocomposites using diblock copolymer dispersants”, ACS Appl. Mater. Interfaces, 9, 44079-44087.
  25. Wang, Y., Qian, J., Zhao, N., Liu, T., Xu, W., Suo, A. (2017). “Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering”, Carbohydr. Polym., 167, 44-51.
  26. Xu, T., Wang, Z., Ding, Y., Xu, W., Wu, W., Zhu, Z., Fong, H. (2018). “Ultralight electropspun cellulose sponge with super-high capacity on absorption of organic compounds”, Carbohydr. Polym., 179, 164-172.
  27. Xu, Y., Enomae, T. (2017). “Development of a paper-based sensor for the qualitative and quantitative detection of Cu2+ in water”, Nord. Pulp Pap. Res. J., 32, 237-243.



DOI: https://doi.org/10.22146/ajche.51313

Article Metrics

Abstract views : 780 | views : 891

Refbacks

  • There are currently no refbacks.