Influence of Ethanol Concentration and Template Ion Exchange Agent on Template Recycling in Mobil Crystalline Material 41 (MCM-41) Synthesis

https://doi.org/10.22146/ajche.50691

Jia Yen Lai(1), Lock Hei Ngu(2*), Farouq Twaiq(3)

(1) Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, Kuching 93350, Sarawak, Malaysia
(2) Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, Kuching 93350, Sarawak, Malaysia
(3) Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, Kuching 93350, Sarawak, Malaysia
(*) Corresponding Author

Abstract


Recycling of surfactant template for several subsequent MCM-41 synthesis is necessary to reduce substantial synthesis solution disposal. In MCM-41 synthesis, ethanol concentration and template ion exchange agent are two significant factors that affect the silicate polymerization, solvating effect on micelles formation, and MCM-41 mesostructure formation. In view of that, this study investigates recycling of surfactant template ions in extract solution in Mobil Crystalline Material 41 (MCM-41) synthesis. Effect of the ethanol concentrations in the solution gel and the types of ion exchange agents on the yield of MCM-41 material and its surface morphology were studied. Hexadecyltrimethylammonium bromide was used as template for MCM-41 synthesis using tetraethylorthosilicate (TEOS) as silica reagent with ethanol-water mixture as solvent at different ethanol concentrations. Template ions of synthesis gel was exchanged with an ion exchange agent (i.e., 1-butyl-3-methylimidazolium chloride or ammonium nitrate) before it is extracted using synthesis solution. After extraction, the extracting solution was added with TEOS, used for second synthesis cycle and the process continued in an extraction. The template ions in the extract solution were further recycled up to eight synthesis cycles. Yield of calcined materials significantly influenced by ethanol solvent concentrations and however did not vary with various ion exchange agents. Nitrogen adsorption isotherms showed that the calcined materials exhibit MCM-41 characteristics with surface areas ranging from 600 – 1000 m2/g. It is possible to recycle and reuse the surfactant template for several subsequent times of preparing MCM-41 if the ethanol concentration in the solution gel controlled continuously.


Keywords


Ethanol concentration, ion exchange agent, MCM-41 synthesis, template ion exchange, template recycling

Full Text:

PDF


References

  1. Ahmed, S. and Ramli, A. (2011). “Effect of surfactant concentration on the physicochemical characteristics of mesoporous molecular sieve”, J. Appl. Sci., 11, 1178-1184.
  2. Ariapad, A., Zanjanchi, M. A., and Arvand, M. (2012). “Efficient removal of anionic surfactant using partial template-containing MCM-41”, Desalination, 284, 142-149.
  3. Barrera, D., Villarroel-Rocha, J., Marenco, L., Oliva, M. I., and Sapag, K. (2011). “Non-hydrothermal synthesis of cylindrical mesoporous materials: influence of the surfactant/silica molar ratio”, Adsorpt. Sci. Technol., 29, 975-988.
  4. Cao, L., Shao, J. G., Yang, Y. B., Yang, Y. X., and Liu, X. N. (2010). “Synthesis of mesoporous silica with cationic-anionic surfactants”, Glass Phys. Chem., 36, 182-189.
  5. Deekamwong, K. and Wittayakun, J. (2017). “Template removal by ion-exchange extraction from siliceous MCM-41 synthesized by microwave-assisted hydrothermal method”, Microporous Mesoporous Mater., 239, 54-59.
  6. Donegá, C. D. M. (2014). Nanoparticles: workhorses of nanoscience, Springer-Verlag, Berlin/Heidelberg, Germany.
  7. Du, P. D., Khieu, D. Q., and Hoa, T. T. (2013). “Removal of organic template from mesoporous MCM-41”, Tạp chí Khoa học Đại học Huế, 69.
  8. González-Rivera, J., Tovar-Rodríguez, J., Bramanti, E., Duce, C., Longo, I., Fratini, E., Galindo-Esquivel, I. R., Ferrari, C. (2014). “Surfactant recovery from mesoporous metal-modified materials (Sn-, Y-, Ce-, Si-MCM-41), by ultrasound assisted ion-exchange extraction and its re-use for a microwave in situ cheap and eco-friendly MCM-41 synthesis”, J. Mater. Chem. A, 2, 7020-7033.
  9. Hitz, S. and Prins, R. (1997). “Influence of template extraction on structure, activity, and stability of MCM-41 catalysts”, J. Catal., 168, 194-206.
  10. Jabariyan, S. and Zanjanchi, M. A. (2012). “A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM-41”, Ultrason. Sonochem., 19, 1087-1093.
  11. Jia, L. X., Song, M. J., Ye, X. Q., Gu, H. F., Zou, C. L., Niu, G. X., and Zhao, D. Y. (2013). “Recycling mother liquor to synthesize mesoporous SBA-15 silica”, Asian J. Chem., 25, 9627-9631.
  12. Keene, M. T. J., Gougeon, R. D. M., Denoyel, R., Harris, R. K., Rouquerol, J., and Llewellyn, P. L. (1999). “Calcination of the MCM-41 mesophase: mechanism of surfactant thermal degradation and evolution of the porosity”, J. Mater. Chem., 9, 2843-2850.
  13. Kim, J. M., Kwak, J. H., Jun, S., and Ryoo, R. (1995). “Ion exchange and thermal stability of MCM-41”, J. Phys. Chem., 99, 16742-16747.
  14. Kleitz, F., Schmidt, W., and Schüth, F. (2001). “Evolution of mesoporous materials during the calcination process: structural and chemical behavior”, Microporous Mesoporous Mater., 44-45, 95-109.
  15. Kleitz, F. (2002). Ordered mesoporous materials: template removal, frameworks and morphology. PhD Dissertation, Ruhr-University Bochum, http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/KleitzFreddy/diss.pdf, accessed April 2017.
  16. Kleitz, F., Schmidt, W., and Schüth, F. (2003). “Calcination behavior of different surfactant-templated mesostructured silica materials”, Microporous Mesoporous Mater., 65, 1-29.
  17. Kumar, S., Malik, M. M., and Purohit, R. (2017). “Synthesis methods of mesoporous silica materials”, Mater. Today Proc., 4, 350-357.
  18. Lang, N. and Tuel, A. (2004). “A fast and efficient ion-exchange procedure to remove surfactant molecules from MCM-41 materials”, Chem. Mater., 16, 1961-1966.
  19. Lebeau, B., Galarneau, A., and Linden, M. (2013). “Introduction for 20 years of research on ordered mesoporous materials”, Chem. Soc. Rev., 42, 3661-3662.
  20. Lehmann, T., Wolff, T., Hamel, C., Veit, P., Garke, B., and Seidel-Morgenstern, A. (2012). “Physico-chemical characterization of Ni/MCM-41 synthesized by a template ion exchange approach”, Microporous Mesoporous Mater., 151, 113-125.
  21. Li, W., Han, Y. C., Zhang, J. L., and Wang, B. G. (2005). “Effect of ethanol on the aggregation properties of cetyltrimethylammonium bromide surfactant”, Colloid J., 67, 159-163.
  22. Li, W., Zhang, M., Zhang, J., and Han, Y. (2006). “Self-assembly of cetyl trimethylammonium bromide in ethanol-water mixtures”, Front. Chem. China, 1, 438-442.
  23. Li, Y. Z. (2014). Investigation of rapid synthesis of zeolite. Degree Programme of Chemistry Research Project, The Ohio State University, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.863.4357&rep=rep1&type=pdf, accessed May 2019.
  24. Liu, S. Q., Cool, P., Collart, O., Voort, P. V. D., Vansant, E. F., Lebedev, O. I., Tendeloo, G. V., and Jiang, M. H. (2003). “The influence of the alcohol concentration on the structural ordering of mesoporous silica: cosurfactant versus cosolvent”, J. Phys. Chem. B, 107, 10405-10411.
  25. Martinez-Palou, R. and Aburto, J. (2015). “Ionic liquids as surfactants - applications as demulsifiers of petroleum emulsions” in: Ionic liquids – current state of the art, S. Handy (Ed), InTech, Rijeka, Croatia, 305-326.
  26. Meléndez-Ortiz, H. I., García-Cerda, L. A., Olivares-Maldonado, Y., Castruita, G., Mercado-Silva, J. A., Perera-Mercado, Y. A. (2012). “Preparation of spherical MCM-41 molecular sieve at room temperature: influence of the synthesis conditions in the structural properties”, Ceram. Int., 38, 6353-6358.
  27. Milea, C. A., Bogatu, C., and Duta, A. (2011). “The influence of parameters in silica sol-gel process”, Bull. Transilvania University of Brasov Series I: Eng. Sci., 4, 59-66.
  28. Naik, B. and Ghosh, N. N. (2009). “A review on chemical methodologies for preparation of mesoporous silica and alumina based materials”, Recent Pat. Nanotechnol., 3, 213-224.
  29. Ng, E. P., Goh, J. Y., Ling, T. C., and Mukti, R. R. (2013). “Eco-friendly synthesis for MCM-41 nanoporous materials using the non-reacted reagents in mother liquor”, Nanoscale Res. Lett., 8, 1-8.
  30. Othman, A. L. and Zeid, A. (2012). “A review: fundamental aspects of silicate mesoporous materials”, Materials, 5, 2874-2902.
  31. Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C. M., Mahapatra, C., Kim, H. W., and Knowles, J. C. (2016). “Sol–gel based materials for biomedical applications”, Prog. Mater. Sci., 77, 1-79.
  32. Satou, S. and Shimizu, T. (2006). U. S. Pat. 20050126439A1.
  33. Somasundaran, P. (2006). Encyclopedia of surface and colloid Science, second ed, CRC Press, Boca Raton, Florida, United States.
  34. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K. S. W. (2015). “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)”, Pure Appl. Chem., 1-19.
  35. Twaiq, F., Nasser, M. S., Al-Ryiami, S., and Al-Ryiami, H. (2012). “Performance of mesoporous organosilicates on the adsorption of heavy oil from produced water”, AIP Conf. Proc., 1482, 579-584.
  36. Twaiq, F., Nasser, M. S., and Onaizi, S. A. (2014). “Effect of the degree of template removal from mesoporous silicate materials on their adsorption of heavy oil from aqueous solution”, Front. Chem. Sci. Eng., 8, 488-497.
  37. Viswanathan, B., Sivasanker, S., and Ramaswamy, A. V. (2002). Catalysis: principles and applications, Narosa Publishing House, New Delhi, India.
  38. Wang, Y., Zhang, Q. H., Ohishi, Y., Shishido, T., and Takehira, K. (2001). “Synthesis of V-MCM-41 by template-ion exchange method and its catalytic properties in propane oxidative dehydrogenation”, Catal. Lett., 72, 215-219.
  39. Wowczyk, D. (2014). Effect of the solute on the micellization process by molecular dynamics simulations. Degree Programme of Chemical Technology Final Year Project, Aalto University, https://aaltodoc.aalto.fi/handle/123456789/12870, accessed March 2017.
  40. Xu, R., Pang, W., Yu, J. H., Huo, Q. S., and Chen, J. S. (2009). Chemistry of zeolites and related porous materials: synthesis and structure, John Wiley & Sons (Asia), Singapore.
  41. Yokoi, T., Yoshitake, H., and Tatsumi, T. (2004). “Synthesis of mesoporous silica by using anionic surfactant” in: Recent Advances in the Science and Technology of Zeolites and Related Materials, Proceedings of the 14th International Zeolite Conference, Cape Town, South Africa, 25-30th April 2004, E. V. Steen and L. H. Callanan (Eds), Elsevier B.V., Amsterdam. 519-527.
  42. Zukal, A., Šiklová, H., Čejka, J., and Thommes, M. (2007). “Preparation of MCM-41 silica using the cationic surfactant blend”, Adsorp., 13, 247-256.



DOI: https://doi.org/10.22146/ajche.50691

Article Metrics

Abstract views : 2769 | views : 2965

Refbacks

  • There are currently no refbacks.