Auxiliary Substrates for Elimination of Trichloroethene, Monochlorobenzene, and Benzene in a Sequential Anaerobic–Aerobic GAC Biobarrier

https://doi.org/10.22146/ajche.50129

M. Gozan(1*), A. Mueller(2), A. Tiehm(3)

(1) Chemical Engineering Departement, Faculty of Engineering, University of Indonesia, Kampus UI, Depok 16424, INDONESIA
(2) Chemical Engineering Departement, Faculty of Engineering, University of Indonesia, Kampus UI, Depok 16424, INDONESIA
(3) Water Technology Centre, Karlsruher Str. 84, 76139 Karlsruhe, GERMANY
(*) Corresponding Author

Abstract


Sequential anaerobic-aerobic barrier is a novel concept for groundwater bioremediation. Trichloroethene (TCE), monochlorobenzene (MCB), and benzene (BZ) were used as model contaminants representing contaminant cocktails frequently found in the contaminated subsurface. The autochthonous microflora from a contaminated field was inoculated to eliminate model contaminants in a set of sequential anaerobic–aerobic granulated activated carbon (GAC) columns and batch studies. In the anaerobic column, the TCE was reductively dechlorinated through cis-dichloroethene (cis-DCE), vinyl chloride (VC), and ethene (ETH). Ethanol and sucrose as auxiliary substrates were added to donate electrons. In the second stage, MCB, BZ, and the lower chlorinated metabolites of TCE degradation, i.e. cis-Dichloroethene (cisDCE) and vinyl chloride (VC), were oxidatively degraded with addition of hydrogen peroxide and nitrate. This paper examines the influence of auxiliary substrates on the biological degradation of model pollutants. In the anaerobic barrier, the auxiliary substrates supply should be maintained low but stoichiometrically adequate for supporting reductive dechlorination. Supplying higher amount of auxiliary substrates provoked competitive reactions in anaerobic conditions, such as sulfate reduction and methanogenesis. If the auxiliary substrates are not utilized completely in the anaerobic phase, the remaining compounds flow into the aerobic phase. This led to unwanted conditions, i.e. oxidation of auxiliary substrates instead of pollutant elimination, and a higher consumption of electron acceptors. In the aerobic barrier, in particular, ethene proved to be a suitable auxiliary substrate for cometabolic degradation of cisDCE.

Keywords


Auxiliary substrates, electron acceptors, dechlorination, biobarrier, bioregeneration

Full Text:

PDF


References

  1. Alvarez, P.J.J. and Vogel, T.M. (1995) Degradation of BTEX and Their Aerobic Metabolites by Indigenous Microorganisms Under Nitrate Reducing Conditions. Water Sci Technol 31(1): 15-28.
  2. Baker, K. and Herson, D. (1994) Microbiology and Biodegradation. In Bioremediation, Baker and Herson (eds) 2nd ed.M McGraw Hill, 9-60.
  3. Blatchley III, E.R. and Thompson, J.E. (1999) Chapter 13: Groundwater Contaminants, in The Handbook of Groundwater Engineering, Jacques W. Delleur, ed,
  4. Springer-CRC Press. Böckle K. (1999) Praxisorientierte Untersuchungen zur mikrobiellen reduktiven Dechlorierung von leichtflüchtigen chlorierten Kohlenwasserstoffen (LCKW). Reports of the Water Technology Center No. 7, DVGW-TZW, Karlsruhe (in German).
  5. Bradley, P.M (2003) History and Ecology of Chloroethene Biodgradation. A Review. Biorem. J. 7(2): 81-109.
  6. Chang, H.L. and Alvarez-Cohen, L. (1996) Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Appl. Environ. Microbiol. 62(9): 3371-3377.
  7. Davis, J.W. and Carpenter, C.L. (1990) Aerobic Biodegradation of vinyl chloride in groundwater samples. Appl. Environ. Microbiol. 56:3878-3880
  8. DiStefano, T.D., Baral, R. Duran, M., Speece, R.E. (2001) A comparison of Complex Electron Donors for Anaerobic Dechlorination of PCE, Bioremediation Journal 5(2):131- 143.
  9. Dolan, M.E. and McCarty, P.L (1995) Small- column microcosm for assessing methane- stimulated vinyl chloride transformation in aquifer samples. Environ. Sci. Technol.29(8): 1892-1897.
  10. Durant, L.P.W., D’adamo, P.C., Bouwer, E.J. (1999) Aromatic Hydrocarbon Biodegradation with Mixtures of O2 and NO3- as Electron Acceptors. Environ. Eng Sci 16(6): 487-500.
  11. Eguchi, M., Kitagawa, M., Suzuki, Y., Nakamura, M., Kawai, T., Okamura, K., Sasaki, S., Miyake, Y. (2001) A Field Evaluation of In situ Biodegradation of Tetrachloroethylene Through Methane injection, Water Res 2001;35(9): 2145-2152
  12. Fennel, D.E., Gosset, J.M., and Zinder, S.H. (1997) Comparison of Butyric Acid, Ethanol, Lactic Acid, and Propionic Acid as Hydrogen Donors for the reductive dechlorination of tetrachloroethene. Environ. Sci. Technol.31(3): 918-926
  13. Freedman D.L., and Gossett J.M. (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55(9): 2144- 2151.
  14. Freedman, D.L., Danko, A.S., Verce, M.F. (2001) Substrate Interaction during aerobic biodegradation of methane, ethene, vinyl chloride and 1,2-dichloroethenes. Water Sci Technol 43(5): 333-340.
  15. Gao, J. and Skeen, R.S. (1999) Glucose-Induced Biodegradation of cis-DCE under Aerobic Condition. Water Res 33(12):2789-2796.
  16. Hartmans, S. and de Bont, J.A.M. (1992) Aerobic vinyl chloride metabolism in mycobacterium aurum L1. Appl. Environ. Microbiol. 58(4):1220-1226.
  17. Haston, Z.C. and McCarty, P.L. (1999) Chlorinated ethene half-velocity coefficients (ks) for reductive dehalogenation. Environ. Sci. Technol. 33: 223-226.
  18. He, J., Sung, Y., Dollhopf, M.E., Fathepure, B.Z., Tiedje, J.M., Löffler, F.E. (2002) Acetate versus Hydrogen as Direct Electron Donors To Stimulate the Microbial Reductive Dechlorination Process at Chloroethene- Contaminated Sites. Environ. Sci. Technol.36(18):3945-3952.
  19. Koziollek, P., Bryniok, D, Knackmuss, H.J. (1999) Ethene as anauxiliary substrate for the cooxidation of cis-1,2-dichloroethene and vinyl chloride. Arc Microbiol. 172:240- 246
  20. Libelo, E.L, Stauffer, T.B., Shelley, T., Antworth, C.A., Macintyre, W.G., Bugna, G. (1998) Processes contibuting to natural attenuation of fuel hydrocarbons in groundwater a field study with known initial conditions. Groundwater Quality, Remediation and protection. In Proc of the GQ ‘98 Conference
  21. Tübingen, Germany IAHS Publ. 250. Liss, S.N. and Baker, K.H. (1994) Anoxic/ Anaerobic Bioremediation, in Bioremediation, eds. K.H. Baker and D.S. Herson, McGraw-Hill, 297-342.
  22. Löffler, F.E., Tiedje, J.E., Sanford, R.A. (1999) Fractions of Electron Consumed in Electron Acceptor Reduction and Hydrogen Thresholds as Indicators of Halorespiratory Physiology. Appl. Environ. Microbiol. 65(9):4049-4056.
  23. Manahan, S.E. (1999) Environmental Chemistry, Lewis-CRC Press. Maymó-Gatell X., Tandoi V., Gossett J.M., Zinder S.H. (1995) Characterization of an H2 -utilizing enrichment culture that reductively dechlorinates tetrachloroethe-ne to vinyl chloride and ethene in the absence of methanogenesis and acetoge-nesis. Appl. Environ. Microbiol. 61:3928-3933.
  24. McCarty, P.L. and Semprini, L. (1994) Groundwater treatment for chlorinated solvents. In Handbook of bioremediation, Norris, R.D. et al. (Eds.) Lewis Publ, Boca raton, FL, 87-116.
  25. Middeldorp, P.J.M., Luitjen M.L.G.C., van de Pas B.A., van Eekert M.H.A., Kengen S.W.M., Schraa G., Stams A.J.M. (1999) Anaerobic microbial reductive dehalogenation of chlorinated ethenes. Bioremediation J. 3(3):151-169.
  26. Nakano Y., Hua L.Q., Nishijima W., Shoto E. and Okada M. (2000) Biodegradation of Trichloroethylene (TCE) adsorbed on Garnular Activated Carbon (GAC). Water
  27. Res 34(17):4139-4142. Nishino S.F., Spain J.C., Belcher L.A., Litchfeld C.D. (1992) Chlorobenzene degradation by bacteria isolated from contaminated groundwater. Appl. Environ. Microbiol. 58:1719-1726.
  28. Schäfer, A. and Bouwer, E.J. (2000) Toluene Induced Cometabolism of cis-DCE and Vinyl Chloride Under Conditions Expected Downgradient of Permeable Fe(0) Barrier. Water Res 34(13):3391-3399.
  29. Phelps, T.J. Malachowsky, K. Schram, R.M., White, D.C (1991) Aerobic mineralization of vinyl chloride by a bacterium of the order Actinomycetales. Appl. Environ. Microbiol. 57(4):1252-1254.
  30. Schöllhorn A., Savary C., Stucki G., Hanselmann K.W. (1997) Comparison of different substrates for the fast reductive dechlorination of trichloroethene under groundwater conditions. Water Res 31(6):1275-1282.
  31. Verce, Matthew F., Ulrich, Ricky L., Freedman, David L. (2000) Characterization of an Isolate That Uses Vinyl Chloride as a Growth Substrate under Aerobic Condition Appl. Environ. Microbiol. 66(8):3535-3542.
  32. WHO (1993) World Health Organization Guidelines for drinking-water quality, 2nd ed. Vol. 1. Recommendations, Geneva.
  33. Wiedemeier, Todd H. (1999) Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface, von Todd H., John Wiley, Chichester.
  34. Wischnak, C and Müller, R. (2000) Degradation of Chlorinated Compounds. In Biotechnology, Volume 11b Environmental Processes II Soil Decontamination, Klein, J. (ed.), 241- 271.



DOI: https://doi.org/10.22146/ajche.50129

Article Metrics

Abstract views : 1622 | views : 947

Refbacks

  • There are currently no refbacks.