An Overview of Difficulties in Controlling Intensified Process

https://doi.org/10.22146/ajche.50123

Reza Barzin(1*), Syamsul Rizal Abd Shukor(2), Abdul Latif Ahmad(3)

(1) School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang, MALAYSIA Phone +604-5996402, Fax: +604-5941013
(2) School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang, MALAYSIA Phone +604-5996402, Fax: +604-5941013
(3) School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang, MALAYSIA Phone +604-5996402, Fax: +604-5941013
(*) Corresponding Author

Abstract


Process intensification (PI) is currently one of the most significant trends in chemical engineering and process technology. PI is a strategy of making dramatic reductions in the size of unit operations within chemical plants, in order to achieve production objectives. PI technology is able to change dramatically the whole chemical engineering industry pathway to a faster, cleaner and safer industry. Nonetheless, PI technology will be handicapped if such system is not properly controlled. There are some foreseeable problems in order to control such processes for instance, dynamic interaction between components that make up a control loop, response time of the instrumentations, availability of proper sensor and etc. This paper offers an overview and discussion on identifying potential problems of controlling intensified systems.

Keywords


fast processes, hybrid systems, miniaturized devices, process control, process intensification

Full Text:

PDF


References

  1. Abd Shukor, S. R. and Tham, M. T. (2004). Performance Envelopes of Process Intensified Systems. Proceedings of International Symposium on Advanced Control of Chemical Processes. HongKong.
  2. Adrian, T., Schoenmakers, H. and Boll, M. (2004). “Model predictive control of integrated unit operations: Control of a divided wall column,” Chemical Engineering and Processing, 43(3), 347–355.
  3. Al-Arfaj, M.A., Luyben, W.L. (2000). “Comparison of alternative control structures for an ideal two-product reactive distillation column.” Industrial and Engineering Chemistry Research, 39(9), 3298–3307.
  4. Al-Arfaj, M.A., Luyben, W.L. (2002a). “Control of ethylene glycol reactive distillation column,” A.I.Ch.E. Journal, 48(4), 905–908.
  5. Al-Arfaj, M. A., Luyben, W. L. (2002b). “Design and control of an olefin metathesis reactive distillation column.” Chemical Engineering Science, 57(5), 715–733.
  6. Bisowarno, B. H., Tian, Y. C., Tade, M. O. (2003). “Model gain scheduling control of an ethyl tert-butyl ether reactive distillation column.” Industrial and Engineering Chemistry Research, 42(15), 3584–3591.
  7. Curry, J. E., Jackson, S. M., Stohrer, B. and van der Veen A. P. (1988). “Free radical degradation of polypropylene,” Chemical Engineering Progress, 84(11), 43-46.
  8. Keller, G. E. and Bryan, P. F. (2000). “Process engineering: Moving in new directions.” Chemical Engineering Process, 96(1), 41- 49.
  9. McGreavy, C. (1983). “On-line control system for chemical reaction processes. “Computers and Chemical Engieering, 7(4), 529-566.
  10. Olanrewaju, M. J.,and Al-Arfaj M. A. (2006). “Estimator-based control of reactive distillation system: Application of an extended Kalman filtering.” Chemical Engineering Science, 61(10), 3386-3399.
  11. Pabedinskas, A., Cluett, W. R., and Balke, S. T. (1989). “Process control for polypropylene degradation during reactive extrusion.” Polymer Engineering and Science, 29(15), 993-1003.
  12. Pabedinskas, A., and Cluett, W. R. (1994). “Controller design and performance analysis for a reactive extrusion process” Polymer Engineering and Science, 34(7), 585-597.
  13. Palusinski, A. O., Vrudhula, S., Znamirowski, L., Humbert, D. (2001).” Process control for microreactors.” Measurement and Control 60-66.
  14. Rogge, T., Rummler, Z., Schomburg, W. K. (2004). “Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process,” Sensors and Actuators A 110, 206–212.
  15. Stankiewicz, A. (2004). Re-engineering the chemical process plant. Marcel Dekker, Inc., New York. Basel
  16. Toledo, E. C. V., Martini, R. F., Maciel, M. R. W., Filho, R. M. (2005). “Process intensification for high operational performance target: Autorefrigerated CSTR polymerization reactor.” Computers and Chemical Engineering, 29(6), 1447–1455.
  17. Wille, Ch., Gabski, H. P., Haller, Th., Kim, H., Unverdorben, L., and Winter, R. (2004) ”Synthesis of pigments in a three-stage microreactor pilot plant—An experimental technical report,” Chemical Engineering Journal, 101, 179–185.



DOI: https://doi.org/10.22146/ajche.50123

Article Metrics

Abstract views : 2650 | views : 1501

Refbacks

  • There are currently no refbacks.


deneme bonusu veren siteler

Tukul777

Situs Slot777 Gacor

Situs Slot88 Gacor

Slot Deposit 5000

Slot Server Thailand

Slot Deposit Dana 5000

Slot Deposit Pulsa 5000

NENG4D

slot thailand

slot gacor

slot thailand

slot mahjong gacor

slot online

kangtoto

slot gacor

slot gacor

slot

DRAGON222

RAJAGACOR

slot gacor

sawer4d

slot depo 5k

slot

https://heylink.me/grosir188

badai118

slot gacor

slot pragmatic

Berita-Hangat-Pagi-Ini-Scatter-Mahjong-Ways-2-Bawa-Hoki-Pak-Budi

slot

slot88

idn poker

rajamenang

surga19 

winter4d

luxury333

SLOT88

bro138

luna805

pin4d

situs slot gacor

Teguh777

slot777

mahjong slot

slot

slot777

slot777

Slot Gacor

Situs Mudah Maxwin

bandar togel online

bagustoto

komunitas sastra papua

posjp33

ino777

Slot gacor

toto togel

daftar slot

apk slot

slot gacor malam ini

nex4d toto slot

situs toto

deneme bonusu veren siteler

slot gacor

bagustoto

slot deposit 5000

slot gacor

situs slot88 gacor

libra168

macan123

link slot gacor

slot

surgavip

slot online

toto slot

hiu777

toto

ikon777

Slot

Slot

Gsc108