Simulated Biosorption of Cd(II) and Cu(II) in Single and Binary Metal Systems by Water Hyacinth (Eichhornia crassipes) using Aspen Adsorption

https://doi.org/10.22146/ajche.49892

Adonis P. Adornado(1*), Allan N. Soriano(2), Omar Nassif Orfiana(3), Mark Brandon J. Pangon(4), Aileen D. Nieva(5)

(1) School of Chemical Engineering and Chemistry, Mapúa University, Manila
(2) School of Chemical Engineering and Chemistry, Mapúa University, Manila
(3) School of Chemical Engineering and Chemistry, Mapúa University, Manila
(4) School of Chemical Engineering and Chemistry, Mapúa University, Manila
(5) School of Chemical Engineering and Chemistry, Mapúa University, Manila
(*) Corresponding Author

Abstract


Biosorption is becoming an attractive alternative for the removal of heavy metal from contaminated wastewaters since it offers low capital and operating costs. It has a great potential on heavy metal decontamination and the possibility of metal recovery. The study evaluated the performance of water hyacinth (Eichhornia crassipes) in a fixed bed column on sequestering heavy metals present in wastewaters. Column breakthrough curves at varying parameters were evaluated. The study used Aspen Adsorption® to simulate the biosorption process. Analysis of breakthrough curves for the single metal system shows that increasing both influent flow rate and initial metal concentration reduces the metal uptake of the column, while increasing bed height enhances the metal uptake of the column. Presence of both Cd(II) and Cu(II) in the system promotes competitive sorption processes. Analysis of the breakthrough curves for the binary metal system showed that copper ions adsorbed to the adsorbent are replaced by cadmium ions when the maximum capacity of the column is reached. This leads to the outlet concentration of Cu(II) exceeding its initial concentration. This phenomenon shows that Cd(II) has more affinity with E. crassipes than Cu(II).

Keywords


Aspen Adsorption®; biosorption; Eichhornia crassipes; heavy metal; water hyacinth

Full Text:

PDF


References

  1. Akinwande, V. O., A. A. Mako and O. J. Babayemii (2013). Biomass yield, chemical composition and the feed potential of water hyacinth (Eichhornia crassipes, Mart.Solms-Laubach) in Nigeria. Int. J. of AgriScience, 3, 659- 666.
  2. Chiban, M., H. Benhima, F. Sinan, P. Seta, and M. Persin (2008). Removal of lead and cadmium ions from aqueous solution by adsorption onto micro- particles of dry plants. Colloids Surf. B: Biointerfaces, 61, 10-16.
  3. Dang, V. B. H., H. D. Doan, T. Dang-Vu and A. Lohi (2009). Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresour. Technol., 100, 211-219.
  4. Davis, T. A., B. Volesky and A. Mucci (2003). A review of biochemistry of heavy metal biosorption by brown algae. Water Res., 37, 4311-4330.
  5. Diniz, V., M. E. Weber, B. Volesky and G. Naja (2008). Column biosorption of lanthanum and europium by Sargassum. Water Res., 42, 363-371.
  6. Escudero, C., J. Poch and I. Villaescusa (2013). Modelling of breakthrough curves of single and binary mixtures of Cu(II), Cd(II), Ni(II), and Pb(II) sorption onto grape stalks waste. Chem. Eng. J., 217, 129-138.
  7. Gallarte, B. (2014). Cd(II), Cu(II), and Pb(II) Simulated Adsorption by Sargassum cristaefolium: Affinity, Competitiveness, and Selectivity. MS Thesis. School of Chemical Engineering and Chemistry, Mapúa Institute of Technology, Philippines.
  8. Geankoplis, C. J. (2005). Principles of Transport Processes and Separation Processes, Pearson Education South Asia PTE. LTD., Philippines.
  9. Babu, B. V. and S. Gupta (2005). Modeling and simulation of fixed bed adsorption column: effect of velocity variation. i-Manager’s JFET, 1, 60.
  10. Hu, Z., X. Yang, A. Gao and X. Wei (2007). Remediation of mycorrhiza on Cd contaminated soil. J. China Univ. of Mining and Tech., 36, 237.
  11. Kleinubing, S. J., E. Guibal, E. A. da Silva and M. G. C. da Silva (2012). Copper and nickel competitive biosorption simulation from single and binary systems by Sargassum filipendula. Chem. Eng. J., 184, 16-22.
  12. Liu, Z., X. Li, Z. Na, D. Lu and S. Liu (2013). Adsorption, concentration and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Eco. Eng., 60, 160-166.
  13. Mahamadi, C. and P. Zambara (2013) High Cu removal from water usingwater hyacinth fixed on alginate. Environ. Chem. Lett., 11, 377-383.
  14. Mahamadi, C. and T. Nharingo (2010). Competetive adsorption of Pb2+ Cd2+and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresour. Technol., 101, 859-864.
  15. Maine, M. A., N. Suñé and S. C. Lagger (2004). Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res., 38, 1494-1501.
  16. Mishra, V. K., B. D. Tripathi and H. K. Kim (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J. Hazard. Mater., 172, 749-754.
  17. Módenes, A. N., F. R. Espinoza- Quinones, D. E. G. Trigueros, F. L. Lavarda, A. Colombo and N. D. Mora (2011). Kinetic and equilibrium adsorption of Cu (II) and Cd (II) ions on Eichhornia crassipes in single and binary systems. Chem. Eng. J., 168, 44- 51.
  18. Mohammed, N., N. Grishkewich, H. A. Waeijen, R. M. Berry and K. Tam (2016). Continuous flow adsorption of methylene blue by cellulose crystal- alginate hydrogel beds in fixed bed columns. Carbohyd. Polym., 136, 1194- 1202.
  19. Mohanty, K., M. Jha, B. C. Meikap and M. N. Biswas (2006). Biosorption of Cr (IV) from aqueous solutions by Eichhornia crassipes. Chem. Eng. J., 117, 71-77.
  20. Murithi, G., C. O. Onindo, E. W. Wambu and G. K. Muthakia (2014). Removal of cadmium (II) ions from water by adsorption using water hyacinth biomass. BioResources, 9, 3613-3631.
  21. Papageorgiou, S. K., F. K. Katsaros, E. P. Kouvelos and N. K. Kanellopoulos (2009). Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. J. Hazard. Mater., 162, 1347-1354.
  22. Perry, R. H. and D. W. Green (2008). Perry’s Chemical EngineeringHandbook, 8th Edition, McGrawHill Professional Publ., New York.
  23. Persson, I. (2010). Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem., 82, 1901-1917.
  24. Rani, J. M., M. Murugan, P. Subramaniam and E. Subramanian (2014). A study on water hyacinth Eichhornia crassipes as oil sorbent. J. Appl. Nat. Sci., 1, 134-138.
  25. Rubio, J., R. W. Smith and I. A. H. Schneider (1999). Effect of mining chemicals on biosorption of Cu2+ by the non-living biomass of the macrophyte Potamogeton lucens. Miner. Eng., 12, 255-260.
  26. Saraswat, S. and J. P. N. Rai (2010). Heavy metal adsorption from aqueous solution using Eichhornia crassipes dead biomass. Int. J. Miner. Process., 94, 203-206.
  27. Simate, G. S. and S. Ndlovu (2015). The removal of heavy metals in a packed bed column using immobilized cassava peel waste biomass. J. Ind. Eng. Chem., 21, 635-643.
  28. Singha, S., U. Sarkar, S. Mondal and S. Saha (2012). Transient behavior of packed column of Eichhornia crassipes stem for the removal of hexavalent chromium. Desalination, 279, 48-58.
  29. Zheng, J. C., H. M. Feng, M. H. W. Lam, P. K. S. Lam, Y. W. Ding and H. Q. Yu (2009). Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. J. Hazard. Mater., 171, 780- 785.



DOI: https://doi.org/10.22146/ajche.49892

Article Metrics

Abstract views : 6732 | views : 4687

Refbacks

  • There are currently no refbacks.



slot zeus

deneme bonusu veren siteler

Tukul777

Situs Slot777 Gacor

Situs Slot88 Gacor

Slot Deposit 5000

Slot Server Thailand

Slot Deposit Dana 5000

Slot Deposit Pulsa 5000

NENG4D

slot thailand

slot gacor

slot thailand

slot mahjong gacor

slot online

kangtoto

slot gacor

slot gacor

slot

DRAGON222

RAJAGACOR

slot gacor

sawer4d

slot depo 5k

slot

https://heylink.me/grosir188

badai118

slot gacor

slot pragmatic

Berita-Hangat-Pagi-Ini-Scatter-Mahjong-Ways-2-Bawa-Hoki-Pak-Budi

slot

slot88

idn poker

rajamenang

surga19 

winter4d

luxury333

SLOT88

bro138

luna805

pin4d

situs slot gacor

Teguh777

slot777

mahjong slot

slot

slot777

slot777

Slot Gacor

Situs Mudah Maxwin

bandar togel online

bagustoto

komunitas sastra papua

posjp33

ino777

Slot gacor

toto togel

daftar slot

apk slot

slot gacor malam ini

nex4d toto slot

situs toto

deneme bonusu veren siteler

slot gacor

bagustoto

slot deposit 5000

slot gacor

libra168

macan123

link slot gacor

slot

surgavip

slot online

toto slot

hiu777

toto

ikon777

Slot

Slot

slot depo 10k

slot online

QQMEGA368

slot

slot

slot

slot

slot

slot gacor

slot online

judi bola sbobet

judi bola sbobet

Link alternatif 3DSbobet

slot

slot deposit 1000

slot gacor

slot

slot

situs slot88 gacor

sarang777

kangtoto

juraganslot

Situs Gacor

Situs Slot777 Gacor

Kilau4D

Kilau4D

Kilau4D

Calon4D

Calon4D

Pusat4D

Pusat4D

Pusat4D

Calon4D

HOKI138

posjp33

gojek789

slot gacor

vega168

macau jitu

slot deposit 1000

slot

kopikini

kawan777

Judi Bola

slot777

Gsc108

bensintoto

slot gacor

slot gacor

https://ilisready.org/

usd777

Slot Gacor

Slot

sand77

agen108

surga19

sga123