Performance Enhancement of Mixed Matrix Membranes through the Incorporation of Alkanolamines for CO2/CH4 Separation

Rizwan Nasir(1), Hilmi Mukhtar(2*), Zakaria Man(3), Maizatul Shima Bt. Shaharun(4), Mohamad Zailani Abu Bakar(5)

(1) Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
(2) Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
(3) Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
(4) Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
(5) School of Chemical Engineering, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
(*) Corresponding Author


Diethanolamine (DEA) solution was used in this study to enhance the performance of polyethersulfone (PES) – carbon molecular sieve (CMS) mixed matrix membrane (MMMs). These new amine mixed matrix membranes (A3Ms) were fabricated at room temperature by using fixed concentration of PES, CMS and different concentrations (5, 10 wt. %) of DEA. The developed mixed matrix membranes were characterized by using field emission scanning electron microscope (FESEM) and thermogravimetric analyser (TGA) in order to investigate the effect of DEA addition on morphology and thermal stability. Gas performance tests were also performed to measure the permeance and selectivity. The characterization results showed that the membranes were thermally stable, dense and non-porous. The gas performance tests showed that the permeance and selectivity of A3Ms is higher than the native PES membrane. CO2 permeance increases with the increase of DEA concentration. Hence it was found that with an addition of 10% (wt. %) DEA at a pressure of 2 bars, the CO2 permeance was increased from 50.86 to 127.06 GPU and the CO2/CH4 selectivity was also increased from 3.08 to 12.30.


Mixed matrix membrane, Alkanolamine solutions, Carbon Dioxide, Permeance.

Full Text:



  1. Baker, R. W. (2002). Future directions of membrane gas separation technology, Ind. Eng. Chem. Res., 41(6), 1393.
  2. Ben Hamouda, S., Q. T. Nguyen, D. Langevin and S. Roudesli (2010). Poly(vinylalcohol)/poly(ethyleneglycol) /poly(ethyleneimine) blend membranes - structure and CO2 facilitated transport, C. R. Chim., 13(3), 372.
  3. Bushell, A. F., M. P. Attfield, C. R. Mason, P. M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. Lanč, K. Friess, V. Shantarovich, V. Gustov and V. Isaeva (2013). Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8, J. Membr. Sci., 427(0), 48.
  4. Caro, J., M. Noack, P. Kölsch and R. Schäfer (2000). Zeolite membranes – state of their development and perspective, Micropor. And Mesopor. Mater., 38(1), 3.
  5. Chiou, J., Y. Maeda and D. Paul (1987). Gas permeation in polyethersulfone, J. Appl. Polym. Sci., 33(5), 1823.
  6. Chung, T. S., L. Y. Jiang, Y. Li and S. Kulprathipanja (2007). Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci., 32(4), 483.
  7. Dong, G., H. Li and V. Chen (2013). Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem., A 1(15), 4610.
  8. Galve, A., D. Sieffert, C. Staudt, M. Ferrando, C. Güell, C. Téllez and J. Coronas (2013). Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes, J. Membr. Sci., 431(0), 163.
  9. Guo, B. and A. Ghalambor (2005). Natural gas engineering handbook, Gulf publishing company, Houston, TX.
  10. Han, J., W. Lee, J. M. Choi, R. Patel and B.-R. Min (2010). Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: Precipitation kinetics, morphology and gas separation, J. Membr. Sci., 351(1–2), 141.
  11. Ismail, A. F. and L. David (2001). A review on the latest development of carbon membranes for gas separation, J. Membr. Sci., 193(1), 1.
  12. Kim, Y. K., J. M. Lee, H. B. Park and Y. M. Lee (2004). The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups, J. Membr. Sci., 235(1–2), 139.
  13. Krishnan, N. N., H. J. Kim, M. Prasanna, E. Cho, E. M. Shin, S. Y. Lee, I. H. Oh, S. A. Hong and T. H. Lim (2006). Synthesis and characterization of sulfonated poly(ether sulfone) copolymer membranes for fuel cell applications, J. Power Sources, 158(2), 1246.
  14. Li, K. (2007). Ceramic membranes for separation and reaction, John Wiley & Sons Ltd., West Sussex, England.
  15. Li, Y., T.-S. Chung and S. Kulprathipanja (2007). Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity, AIChE J., 53(3), 610.
  16. Li, Y., H. Zhou, G. Zhu, J. Liu and W. Yang (2007). Hydrothermal stability of LTA zeolite membranes in pervaporation, J. Membr. Sci., 297(1), 10.
  17. Liu, K., C. Song and V. Subramani (2010). Hydrogen and syngas production and purification technologies, Wiley Online Library, Hoboken, NJ.
  18. Magueijo, V. M., L. G. Anderson, A. J. Fletcher and S. J. Shilton (2013). Polysulfone mixed matrix gas separation hollow fibre membranes filled with polymer and carbon xerogels, Chem. Eng. Sci., 92(0), 13.
  19. Moore, T. T., R. Mahajan, D. Q. Vu and W. J. Koros (2004). Hybrid membrane materials comprising organic polymers with rigid dispersed phases, AIChE J., 50(2), 311.
  20. Mulder, M. (1996). Basic principles of membrane technology, Springer.
  21. Nasir, R., H. Mukhtar, Z. Man and D. F. Mohshim (2013). Material Advancements in Fabrication of Mixed-Matrix Membranes, Chem. Eng. Technol., 36(5), 717.
  22. Noble, R. D. and S. A. Stern (1995). Membrane separations technology: principles and applications, Elsevier.
  23. Olajire, A. A. (2010). CO2 capture and separation technologies for end-of- pipe applications – A review, Energy, 35(6), 2610.
  24. Park, H. B., Y. K. Kim, J. M. Lee, S. Y. Lee and Y. M. Lee (2004). Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes, J. Membr. Sci., 229(1), 117.
  25. Powell, C. E. and G. G. Qiao (2006). Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, J. Membr. Sci., 279(1–2), 1.
  26. Rostamizadeh, M., M. Rezakazemi, K. Shahidi and T. Mohammadi (2013). Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydro.Ener., 38(2), 1128.
  27. Saedi, S., S. S. Madaeni, F. Seidi, A. A. Shamsabadi and S. Laki (2013). Synthesis and application of a novel Amino-Starch derivative as a new polymeric additive for fixed facilitated transport of carbon dioxide through an asymmetric polyethersulfone (PES) membrane, Int. J. Greenhouse Gas Contr., 19(0), 126.
  28. Singh-Ghosal, A. and W. Koros (2000). Air separation properties of flat sheet homogeneous pyrolytic carbon membranes, J. Membr. Sci., 174(2), 177.
  29. Speight, J. G. (2007). Natural Gas: A Basic Handbook, Gulf Publishing Company.
  30. Vu, D. Q., W. J. Koros and S. J. Miller (2003). Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results, J. Membr. Sci., 211(2), 311-334. 
  31. Widjojo, N. and T. S. Chung (2006). Thickness and air gap dependence of macrovoid evolution in phase- inversion asymmetric hollow fiber membranes, Ind. Eng. Chem. Res., 45(22), 7618.
  32. Xiao, Y., B. T. Low, S. S. Hosseini, T. S. Chung and D. R. Paul (2009). The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review, Prog. Polym. Sci., 34(6), 561.


Article Metrics

Abstract views : 41 | views : 13


  • There are currently no refbacks.