Multicriterial Analysis of Simulated Process of Post-Combustion Capture of Pure H2S and Mixtures of H2S and CO2 Using Single and Blended Aqueous Alkanolamines

https://doi.org/10.22146/ajche.49695

Allan N. Soriano(1*), Adonis P. Adornado(2), Angelica A. Pajinag(3), Diana Joy F. Acosta(4), Niel M. Averion(5), Gilfred M. Leron(6), Vergel C. Bungay(7)

(1) School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila, 1002, Philippines
(2) School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila, 1002, Philippines
(3) School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila, 1002, Philippines
(4) School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila, 1002, Philippines
(5) School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila, 1002, Philippines
(6) School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila, 1002, Philippines
(7) Department of Chemical Engineering, De La Salle University, Manila, Philippines
(*) Corresponding Author

Abstract


The paper evaluates the performance of the nine selected alkanolamines, namely, monoethanolamine (MEA), diethanolamine (DEA), monomethylethanolamine (MMEA), aminoethylethanolamine (AEEA), diisopropanolamine (DIPA), triethanolamine (TEA), dimethylethanolamine (DMEA), N-methyldiethanolamine (MDEA), and piperazine (PZ) for post-combustion capture of pure hydrogen sulfide (H2S) and mixtures of hydrogen sulfide and carbon dioxide (CO2) at different solvent mass flows: 500, 750, and 1000 kg/h using Aspen Plus® Version 7.2. The objective of the paper is to select the best chemical absorbent for each different criterion: percent H2S removal, percent H2S solvent carrying capacity, percent H2S retained in the lean solvent, percent CO2 and H2S removal, percent CO2 and H2S solvent carrying capacity, percent CO2 and H2S retained in the lean solvent. Based from the obtained results, piperazine is an absorbent that has a good potential for use as a single amine or in mixtures with other amines for capture of pure H2S and mixtures of H2S and CO2.

Keywords


Absorption, Alkanolamine, Carbon Dioxide, Post-Combustion Capture, Hydrogen Sulfide, Simulation.

Full Text:

PDF


References

  1. Al-Baghli N. A., S. A. Pruess, V. F. Yesavage, and M. Sami Selim (2001). A rate-based model for the design of gas absorbers for the removal of CO2 and H2S using aqueous solutions of MEA and DEA. Fluid Phase Equilib., 185, 31- 43.
  2. Augsten, D. M. (1989). A Model for Vapor-Liquid Equilibria for Acid Gas- Alkanolamine-H2O Systems. Ph.D. Dissertation, The University of Texas - Austin, Austin, Texas, U.S.A.
  3. Bishnoi, S. and G. T. Rochelle (2000). Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem. Eng. Sci., 55, 5531-5543
  4. Bishnoi, S. and G.T. Rochelle (2002). Thermodynamics of piperazine / methyldiethanolamine / water / carbon dioxide. Ind. Eng. Chem. Res., 41, 604- 612.
  5. Chen, C.-C. and L.B. Evans (1986). A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems. AIChE J., 32, 444- 454.
  6. Cheng, H. H. and C. S. Tan (2009). Carbon dioxide capture by blended alkanolamines in rotating packed bed. Energy Procedia, 1, 925-32.
  7. Faiz, R. and M. Al-Marzouqi (2009). Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in a hollow fiber membrane contactors. J. Membrane Sci., 342, 269-278
  8. Freeman, S.A., R. Dugas, D. H Van Wagener, T. Nguyen, and G. T. Rochelle (2010). Carbon dioxide capture with concentrated, aqueous piperazine. Int. J. Greenh. Gas Cont., 4, 119-24.
  9. Gabrielsen J., H. F. Svendsen, M. L. Michelsen, E. H. Stenby, and G. M. Kontogeorgis (2007). Experimental validation of a rate-based model for CO2 capture using an AMP solution. Chem. Eng. Sci., 62, 2397-2413
  10. Hamborg, E. S. and G. F. Versteeg (2009). Dissociation constants and thermodynamic properties of alkanolamines. Energy Procedia, 1, 1213-1218.
  11. Hedayat, M., M. Soltanieh, and S. A. Mousavi (2011). Simultaneous separation of H2S and CO2 from natural gas by hollow fiber membrane contractor using mixture of alkanolamines. J. Membrane Sci., 377, 191-197.
  12. Keshavarz, P., J. Fathikalajahi, and S. Ayatollahi (2008). Mathematical modeling of the simultaneous absorption of carbon dioxide and hydrogen sulfide in a hollow fiber membrane contractor. Sep. Pur. Technol., 63, 145-155
  13. Leron, G. M., A. P. Adornado, D. G. Zalvidea, L. P. Gutierrez, S. W. B. Suarez, A. N. Soriano, and M.-H. Li (2014). Selection of single and blended aqueous alkanolamine for post- combustion carbon dioxide capture using rate-based non-equilibrium process simulation. PIChE J., 15, 85- 104.
  14. Littel, R. J., W. P. M. van Swaaij, and G. F. Versteeg (1990). Kinetics of carbon dioxide with tertiary amines in aqueous solution. AIChE J., 36, 1633- 1640
  15. Lu J. G., Y. F. Zheng, and D. L. He (2006). Selective absorption of H2S from gas mixtures into aqueous solutions of blended amines of methyldiethanoamine and 2- tertiarybutylamino-2-ethoxyethanol in packed column. Sep. Pur. Technol. 1, 209-217.
  16. Mandal, B. P. and S. S Bandyopadhyay (2005). Simultaneous absorption of carbon dioxide and hydrogen sulfide into aqueous blends of 2-amino-2- methyl-1-propanol and diethanolamine. Chem. Eng. Sci., 60, 6438-6451.
  17. Mock, B., L. B. Evans and C.-C. Chen (1986). Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems. AIChE J., 32, 1655- 1664.
  18. Oexmann J., C. Hensel, and A. Kather (2008). Post-combustion CO2-capture from coal-fired power plants: preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate. Int. J. Greenh. Gas Cont., 2, 539-552.
  19. Padurean A., C.–C. Cormos, A.–M. Cormos, and P.–S. Agachi (2010). Multicriterial analysis of post- combustion carbon dioxide capture using alkanolamines. Int. J. Greenh. Gas Cont., 10, 1-10.
  20. Peng, Y., B. Zhao, and L. Li (2012). Advances in post-combustion CO2 capture with alkaline solution: a brief review. Energy Procedia, 14, 1515- 1522.
  21. Pitzer, K. S. (2002). Electrolytes from Dilute Solutions to Fused Salts. J. Am. Chem. Soc., 102, 2902-2906
  22. Qi, Z. and E. L. Cussler (1985). Microporous hollow fibers for gas absorption: I. mass transfer in the liquid. J. Membrane Sci., 23, 321-332.
  23. Renon, H. and J. M. Prausnitz (1968). Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChE J., 14, 135-144.
  24. Robinson, R. A. and Stokes, R. H. (1970). Electrolyte Solutions, 2nd Edition. London, Butterworths.
  25. Rongwong, W., S. Boributh, S. Assabumrungrat, N. Laosiripojana, R. Jiraratananon (2012). Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contractor. J. Membrane Sci., 392-393, 38-47.



DOI: https://doi.org/10.22146/ajche.49695

Article Metrics

Abstract views : 2130 | views : 1693

Refbacks

  • There are currently no refbacks.