A Skeletal Kinetic Model For Biodiesel Fuels Surrogate Blend Under Diesel-Engine Conditions

https://doi.org/10.22146/ajche.49693

Chit Wityi Oo(1), Masahiro Shioji(2), Hiroshi Kawanabe(3), Susan A. Roces(4*), Nathaniel P. Dugos(5)

(1) Gokongwei College of Engineering, Chemical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
(2) Department of Energy Conversion Sciences, Kyoto University, Kyoto, Japan
(3) Department of Energy Conversion Sciences, Kyoto University, Kyoto, Japan
(4) Gokongwei College of Engineering, Chemical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
(5) Gokongwei College of Engineering, Chemical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
(*) Corresponding Author

Abstract


The biodiesel surrogate fuels are realistic kinetic tools to study the combustion of actual biodiesel fuels in diesel engines. The knowledge of fuel chemistry aids in the development of combustion modeling. In order to numerically simulate the diesel combustion, it is necessary to construct a compact reaction model for describing the chemical reaction. This study developed a skeletal kinetic model of methyl decanoate (MD) and n-heptane as a biodiesel surrogate blend for the chemical combustion reactions. The skeletal kinetic model is simply composed of 45 chemical species and 74 reactions based on the full kinetic models which have been developed by Lawrance Livermore National Laboratory (LLNL) and Knowledge-basing Utilities for Complex Reaction Systems (KUCRS) under the diesel like engine conditions. The model in this study is generated by using CHEMKIN and then it is used to produce the ignition delay data and the related chemical species. The model predicted good reasonable agreement for the ignition delays and most of the reaction products at various conditions. The chemical species are well reproduced by this skeletal kinetic model while the good temperature dependency is found under constant pressure conditions 2MPa and 4MPa. The ignition delay time of present model is slightly shorter than the full kinetic model near negative temperature coefficient (NTC) regime. This skeletal model can provide the chemical kinetics to apply in the simulation codes for diesel-engine combustion.

Keywords


Kinetic mechanism, Surrogate fuel, Ignition delay, Methyl Decanoate, n-Heptane.

Full Text:

PDF


References

  1. Curran, H. J., Gaffuri, P., Pitz, W. J., and Westbrook, C. K. (1998), “A comprehensive modeling study of n-heptane oxidation,” Combustion and Flame, vol. 114, pp. 149-177.
  2. Curran, H. J., Gaffuri, P., Pitz, W. J. and Westbrook, C. K. (2002), “A comprehensive modeling study of iso-octane oxidation,” Combustion and Flame, vol.129, pp.253-280.
  3. Dagaut, P., Gail, S., and Sahasrabudhe,M.(2007), “Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature and equivalence ratio; experimental and modelling kinetic study,” Proc Combust Inst, vol. 31, pp. 2955-2961.
  4. Fisher, E. M., Pitz, W. J., Curran H. J., and Westbrook, C. K. (2000), “Detailed chemical kineticmechanisms for combustion ofoxygenated fuels,” Proceedings ofthe Combustion Instittute, vol. 28,pp. 1579-1596.
  5. Herbinet, O., Pitz, W. J., andWestbrook, C. K. (2008), “Detailedchemical kinetic oxidationmechanism for a biodieselsurrogate,” Journal of Combustionand Flame, vol. 154, pp. 507-528.
  6. Herbinet, O., Pitz, W. J., andWestbrook, C. K. (2010), “Detailedchemical kinetic mechanism foroxidation of biodiesel fuels blendsurrogate,” Combustion and Flame,vol. 157: pp. 893-908.
  7. Jason, Y. W., Kuang, C. L., and Violi,A. (2011), “Biodiesel combustion:Advances in chemical kineticmodeling,” Progress in Energy andCombustion Science, vol. 37, pp. 1-14.
  8. Kawanabe, H., and Ishiyama, T.(2012), “A Study on a ReducedKinetic Model for n-Cetane and Heptamethylnonane Based on a PRF Reduced Kinetic Model,” SAE Technical Paper 2012-01-1576, 2012, doi:10.4271/2012-01-1576.
  9. Naik, C. V., and Westbrook, C. K. (2009, April 4), “Kinetic modeling of combustion characteristics of real biodiesel fuels,” U.S. National Combustion Meeting, Lawrence Livermore National Laboratory.
  10. Patel, A., Kong, S., and Reitz, R. (2004), “Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations,” SAE Technical Paper 2004-01-0558, 2004, doi:10.4271/2004-01-0558.
  11. Tsurushima, T. (2009), “A new skeletal PRF kinetic model for the HCCI combustion,” Proc. of the Combustion Institute, vol.32, pp.2835-2841.
  12. Westbrook, C. K., Pitz, W. J., Herbinet, O., Curran, H. J., and Silke, E. J. (2009), “A Detailed Chemical Kinetic Reaction Mechanism for n-Alkane Hydrocarbons from n-Octane to n- Hexadecane,” Combustion and Flame, vol. 156, pp.181-199.
  13. https://www.erc.wisc.edu/chemicalr eaction



DOI: https://doi.org/10.22146/ajche.49693

Article Metrics

Abstract views : 1838 | views : 1596

Refbacks

  • There are currently no refbacks.


ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.